

Heavy Fermions and Quantum Phase Transitions: A Theorist's Perspective

Qimiao Si

Rice University

Institute of Physics, CAS, Beijing, Nov 10-12, 2012

Superconductivity at the border of magnetism

Mathur et al

Heavy fermions

Cuprates

Broun

Pnictides

Organics

Faltermeier et al

Heavy fermion metals as prototype quantum critical points

YbRh₂Si₂ J. Custers et al

CePd₂Si₂ N. Mathur et al

CeRhIn₅

T. Park et al

1. What is the Hamiltonian?

Kondo lattices:

$$H = \sum_{ij} I_{ij} \mathbf{S}_i \cdot \mathbf{S}_j + \sum_{ij,\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_i J_K \mathbf{S}_i \cdot \mathbf{s}_{c,i}$$

J. W. Allen Y. F. Yang P. Aynajian

Kondo lattices:

M. Klein et al, PRL 101, 266404 ('08)

S. Ernst et al, Nature 474, 362 ('11)

2. Quantum Criticality & Novel Phases

S. Paschen C. Pépin Shiyan Li V. A. Sidorov

S. Friedemann G-Q Zheng K. Ueda H. Xiao C. Broholm A. Strydom F. M. Grosche Z. A. Xu

- Competing states due to competing interactions
- Finite T: Quantum critical regime
- Beyond Landau?

Special issue: J. Low Temp. Phys. (Oct 2010) Focus issue: Nature Phys. (March 2008) QS & F. Steglich, Science 329, 1161 (2010)

Collapse of Kondo scale

QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001);

C. Pépin

P. Coleman et al, JPCM 13, R723 (2001)

- ω/T scaling in $\chi(\omega,T)$ and $G(\omega,T)$
- •Collapse of a large Fermi surface
- •Multiple energy scales

Dynamical Scaling

INS and M/H

A. Schröder et al., Nature ('00);O. Stockert et al; M. Aronson et al.

Dynamical Scaling

Marching towards the QC regime: C. Broholm (YbRh₂Si₂) P. Aynajian (CeColn₅)

Kondo-destruction QCP in CeRhIn₅

T. Park

T. Park et al., Nature 440, 65 ('06); G. Knebel et al., PRB74, 020501 ('06)

Fermi Surface and Energy Scales in YbRh₂Si₂

S. Paschen S. Friedemann

S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel, F. Steglich,

S. Paschen, S. Kirchner, and QS, PNAS 107, 14547 (2010)

S. Paschen et al, Nature (2004); P. Gegenwart et al, Science (2007)

Spin dynamics in YbRh₂Si₂

C. Broholm

- Neutron scattering at last!
 - AF wavevector!
 - Spin resonance at H>H*

Heavy fermion metals:

quantum critical points

global phase diagram

G: frustration, reduced dimensionaltiy, ...

Pure and doped YbRh₂Si₂

S. Friedemann

Effect of dimensionality – the case of cubic Ce₃Pd₂₀Si₆

J. Custers, R. Yu, et al., Nature Materials 11, 189 (2012)

S. Paschen

Shastry-Sutherland Lattice Ce₂Pt₂Pb (M. C. Aronson)

Kagome lattice CePdAl (H. v. Löhneysen)

E. D. Mun et al., arXiv:1211.0636

Superconductivity at the border of magnetism

Mathur et al

Heavy fermions

Cuprates

Broun

Pnictides

Organics

Faltermeier et al

Quantum critical points

emergent phases

Entropy accumulation near QCP

L. Zhu, M. Garst, A. Rosch, QS, PRL (2003)

Emergent phases near QCP

V. A. Sidorov et al, PRB 67, 224419 ('03)

Superconductivity at the border of magnetism

 Magnetic fluctuations a la Landau – glues for superconductivity

or

Magnetism as proxy

 new excitations in normal state

 Pairing suscep. Enhancement at Kondo destruction QCP

3. Magnetism and Superconductivity

F. Ronning T. Park
L. Shu G.-Q. Zheng
K. Ishida K. Ueda
G.-M. Zhang P. Dai

- Microscopic coexistence vs phase separation
- Excitations in the coexistence region
- Odd-frequency pairing due to quantum criticality
- Exchange energy gain vs condensation energy

4. Kondo insulators/Heavy Fermion semiconductors

> C. Petrovic A. Strodym

FeSb₂ – towards tomorrow's thermoelectric materials (electron correlations save the world)? Petrovic Peijie Sun (IOP/CAS)

Global phase diagram of Kondo insulators

Global phase diagram of Kondo insulators

CeRu₂Al₁₀: Kondo insulator AF (**A. Strydom**) Alternatively: "bad metal" AF? Is YFe₂Al₁₀ a failed "Kondo insulator"?

5. Ferromagnetism and the case for ferromagnetic QCP

S. Friedemann G.-M. Zhang K. Ueda

Growing list of ferromagnetic heavy fermions:	

URu _{2-x} Re _x Si ₂	N. P. Butch & M. B. Maple, PRL ('09)

--YbNi₄ P_2 A. Steppke et al ('12)

--CeRu₂Al₂B

E. Baumbach et al, PRB ('12)

- Is there a metallic FM QCP?
 - Hertz-Moriya-Millis: NO!

- QCP of YbNi₄P₂ (Friedemann)
 - Because of 1D bandstructure?
 - Alternatively: because of Kondo effect?

6. The marching band of materials ...

The # of materials discussed reached the large-N limit!!!

Extending the materials basis for QCP, Kondo insulators (eg spin-orbit physics), ...