

QCP in strongly correlated superconductors

Hong Xiao IOP

QCP

Outline

- QCP in heavy fermion superconductor CeCoIn₅
- QC in mixed valence compound Ce_{1-x}YbCoIn₅
- First order QPT and possible QTCP in iron-based superconductor Ba(Fe_{1-x}Co_x)As₂

Outline

- QCP in heavy fermion superconductor CeCoIn₅
- Quantum criticality in mixed valence compound Ce_{1-x}YbCoIn₅
- First order QPT and possible QTCP in iron-based superconductor Ba(Fe_{1-x}Co_x)As₂

HFSC: Prototypical system to study QCP

QCP in CeColn₅

A direct probe is needed ...

I-V measurements

PRL 108, 056401 (2012)

Abnormal vortex core resistivity

 $\bullet\rho_{\rm ff}$ \uparrow sharply as T,H \downarrow

• $\rho_{\rm ff} \approx \rho_{\rm n}$

•Sharp \uparrow in $\rho_{\rm ff}$ reflects the \uparrow in the scattering of the quasiparticles in the vortex core due to critical AF fluctuations near T_N

PRL 108, 056401 (2012)

Workshop on "Heavy Fermions and Quantum Phase Transitions", Nov 10-12, 2012

Pressure suppress the abnormal behavior

Phase diagram

$$\frac{P-P_c}{P^*-P_c} = \left(1-\frac{T_N}{T_{c0}}\right) \left(1-\frac{H_N}{H_{c2}(T_N)}\right)$$

PRL 108, 056401 (2012)

T = 0 K

$$\frac{P-P_c}{P^*-P_c} = \left(1 - \frac{T_N}{T_{c0}}\right) \left(1 - \frac{H_N}{H_{c2}(T_N)}\right)$$

- Give the actual QCP line
- For P<P_c, the SC phase is inside the AF dome
- For P>P_c, the AF phase coexists with SC only inside the vortex cores
- SC and QC are close related

PRL 108, 056401 (2012)

Outline

- QCP in heavy fermion superconductor CeCoIn₅
- Quantum criticality in mixed valence compound Ce_{1-x}YbCoIn₅
- First order QPT and possible QTCP in iron-based superconductor Ba(Fe_{1-x}Co_x)As₂

Whether QCP must be present in the material's phase diagram to induce NFL behavior and trigger SC?

MR data in Ce_{1-x}Yb_xCoIn₅

arXiv:1208.4308

- Low T behavior : field quenching of AFM spin fluctuations
- At the QCP, the g-factor jumps.

arXiv:1208.4308

Workshop on "Heavy Fermions and Quantum Phase Transitions", Nov 10-12, 2012

Evolution of H_{QCP}

- SC is robust and survives over the whole Yb doping range
- Field-induced QCP is strongly suppressed with Yb doping and disappears for x>0.20
- SC and quantum criticality are likely to be decoupled in this system

arXiv:1208.4308

arXiv:1208.4308

Workshop on "Heavy Fermions and Quantum Phase Transitions", Nov 10-12, 2012

Outline

- QCP in heavy fermion superconductor CeCoIn₅
- Quantum criticality in mixed valence compound Ce_{1-x}YbCoIn₅
- First order QPT and possible QTCP in iron-based superconductor Ba(Fe_{1-x}Co_x)As₂

Iron-based SC

Science 336, 1554 (2012)

Evidence for QCP

Absence of QCP in BaFe_{2-x}Ni_xAs₂

- The static AF order in changes abruptly from a commensurate wave vector for x = 0.085 to an incommensurate wave vector with short-range order for x = 0.092, 0.096.
 - T_N suddenly vanishes at x = 0.1 from $T_N \sim 35K$ for x = 0.096. The IC AF to SC phase transition appears to be first order

PRL 108, 247002 (2012)

Tricritical point in Ba(Fe_{1-x}Co_x)₂As₂

$Ba(Fe_{1-x}Co_x)_2As_2$

I-V measurements

Unpublished

Workshop on "Heavy Fermions and Quantum Phase Transitions", Nov 10-12, 2012

X = 0.06, AFM inside SC

Unpublished

X = 0.06, AFM inside SC

Unpublished

Summary

The origin of unconventional SC could be much more profound and need to be further explored.