
Three new Insights on
Quantum Criticality

C. Pépin   (IPhT, CEA-Saclay)  

Beijing, Nov. 11th,  2012

Conseil scientifique du CEA  du 19 octobre 2007 
De l’atome aux matériaux : théorie, modélisation, expériences

1

Points Critiques Quantiques (PCQs)
dans les systèmes d’électrons  en 

corrélations fortes.

Catherine Pépin
Service de Physique Théorique
CEA-Saclay

• PCQs dans les supraconducteurs à haute température 
critiques
       LLB,SPEC,SPhT CEA-Saclay

• PCQs dans les composés à fermions lourds
       SPSMS, Grenoble

        SPhT, Saclay

 IIP, Natal

 K.B. Efetov

 M. Norman

 H. Meier

 I. Paul

dimanche 11 novembre 12



2

UBe13 

100 

200 

300 

100 200 
T(K) 

CeAl3 

UBe13 

c-
1  (

em
u/

m
ol

)-
1 

0 
0 

Heavy Fermion Metals:  Extreme Limit of Mass Renormalization.  
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Nakatsuji 03

Ce : Yb : U :

S=1/2        L=3
Spin Orbit : J= |L-S|= 5/2

S=1/2      L=3
S O : J= |L+S|= 7/2

S=1        L=3+2
S O : J= |L-S|= 4

Crystal Electric Field effects split the big moments and compete with Hunds rules

Ferromagnetic fluctuations
valence fluctuations
multiple stage screening ?

Kondo screening

Cooper pairs

AF singlets

Spin Liquid

Entropic considerations
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Fig. 2: Tentative phase diagram of the Kondo Breakdown QCP in the presence of magnetism. The third axis
represented on this diagram is the axis of “frustration”. It can be any external parameter which competes with the

AF long range order. When the frustration parameter is strong enough, AF disappears, revealing the Kondo
Breakdown QCP. Within this 3D phase diagram, one observed a line of Kondo Breakdown QCPs, which are

uncorrelated with the magnetic order. The crossing of the two critical lines of AF LRO and Kondo Breakdown is
accidental. In the Kondo Breakdown theory, the compound YbRh2Si2 is situated at the crossings ; CeRhIn5 would

be situated somewhere on the frustration axis, URu2Si2 would be deep in the heavy Fermi liquid phase (with a
super-conducting instability at low temperatures) and CeCu6−xAux is located at the AF QCP of itinerant

character. This phase diagram suggests that the Kondo Breakdown QCP is a generic feature of any heavy fermion
phase diagram ; it is a universal fixed point, of non magnetic character, whose influence on transport properties

dominates other scattering mechanisms in the quantum critical regime. Note that another phase diagram has been
proposed [48] where the crossing of the Kondo breakdown line and the AF line has a finite width.

and τp(ω) is the transport scattering time, which in-
cludes both the effects of the impurities and the scatte-
ring through the fluctuations of the bosonic mode. Ano-
ther difference with Ref. [29] is that τp depends on the
position of p on the Fermi surface. We use the Mathies-
sen’s rule for adding the resistivities to get

τ−1
p

(ω) = τ−1
imp(p, ω) + τ−1

dyn(p, ω) . (9)

To simplify the discussion, we take τ−1
imp(p, ω) = τ−1

0 as
a constant of p and ω. The elastic scattering time τ0

encompasses for example the scattering through impurity
centers. The effect of the fluctuations are described by
τ−1
dyn(p, ω) = τ−1

h in the hot regions and τ−1
fluct(p, ω) =

τ−1
c in the cold regions. Typically in the SDW theory

the inelastic part of the scattering time has the following

form

τ−1
h ! Ah T (d−2)/2

τ−1
c ! Ac T 2 ,

(10)

where Ah and Ac are non universal constants. τ−1
c has

the typical Fermi liquid exponent while τ−1
h has an ano-

malous exponent due to the scattering through the soft
quantum modes present at the QCP. Details of the eva-
luation of L11 and L12 can be found in the Appendix.
The result is :

L11 =
πv2

F ρ∗0
2

[

Vh

τ−1
0 + τ−1

h

+
Vc

τ−1
0 + τ−1

c

]

, (11)

where ρ∗dε =
∫ +∞

0 p2dp/(2π)2 and Vh (resp. Vc ) is the
volume of the hot (resp. cold ) regions of the Fermi sur-
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and τp(ω) is the transport scattering time, which in-
cludes both the effects of the impurities and the scatte-
ring through the fluctuations of the bosonic mode. Ano-
ther difference with Ref. [29] is that τp depends on the
position of p on the Fermi surface. We use the Mathies-
sen’s rule for adding the resistivities to get

τ−1
p

(ω) = τ−1
imp(p, ω) + τ−1

dyn(p, ω) . (9)

To simplify the discussion, we take τ−1
imp(p, ω) = τ−1

0 as
a constant of p and ω. The elastic scattering time τ0

encompasses for example the scattering through impurity
centers. The effect of the fluctuations are described by
τ−1
dyn(p, ω) = τ−1

h in the hot regions and τ−1
fluct(p, ω) =

τ−1
c in the cold regions. Typically in the SDW theory

the inelastic part of the scattering time has the following

form

τ−1
h ! Ah T (d−2)/2

τ−1
c ! Ac T 2 ,

(10)

where Ah and Ac are non universal constants. τ−1
c has

the typical Fermi liquid exponent while τ−1
h has an ano-

malous exponent due to the scattering through the soft
quantum modes present at the QCP. Details of the eva-
luation of L11 and L12 can be found in the Appendix.
The result is :

L11 =
πv2

F ρ∗0
2
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]

, (11)
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0 p2dp/(2π)2 and Vh (resp. Vc ) is the
volume of the hot (resp. cold ) regions of the Fermi sur-
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and τp(ω) is the transport scattering time, which in-
cludes both the effects of the impurities and the scatte-
ring through the fluctuations of the bosonic mode. Ano-
ther difference with Ref. [29] is that τp depends on the
position of p on the Fermi surface. We use the Mathies-
sen’s rule for adding the resistivities to get

τ−1
p

(ω) = τ−1
imp(p, ω) + τ−1

dyn(p, ω) . (9)

To simplify the discussion, we take τ−1
imp(p, ω) = τ−1

0 as
a constant of p and ω. The elastic scattering time τ0

encompasses for example the scattering through impurity
centers. The effect of the fluctuations are described by
τ−1
dyn(p, ω) = τ−1

h in the hot regions and τ−1
fluct(p, ω) =

τ−1
c in the cold regions. Typically in the SDW theory

the inelastic part of the scattering time has the following

form

τ−1
h ! Ah T (d−2)/2

τ−1
c ! Ac T 2 ,

(10)

where Ah and Ac are non universal constants. τ−1
c has

the typical Fermi liquid exponent while τ−1
h has an ano-

malous exponent due to the scattering through the soft
quantum modes present at the QCP. Details of the eva-
luation of L11 and L12 can be found in the Appendix.
The result is :

L11 =
πv2

F ρ∗0
2

[

Vh

τ−1
0 + τ−1

h

+
Vc

τ−1
0 + τ−1

c

]

, (11)

where ρ∗dε =
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0 p2dp/(2π)2 and Vh (resp. Vc ) is the
volume of the hot (resp. cold ) regions of the Fermi sur-
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Breakdown of the Kondo effect associated 
with a Mott transition on the f-electrons

P. Coleman (Schroder  2000)
 deconfinement, 
fractionalization

Q. Si, Nature (02-)
S. Kirchner  (06,08)
locally quantum 
critical

Pines, Yang, Fisk (08)
two fluids model

Senthil, Sachdev ,Vojta (04)
model for 
fractionalization, spin 
liquid

CP, Norman ,Paul (07)
selective Mott 
transition, z=3 regime of 
fluctuations

Zhu, Martin, PNP (09)
modulations in Kondo 
breakdown

Continentino (09) Vekhter + 
Seo+ CP (10)  Paul ,Norman 
(10)
SC quantum critical 
point

Burdin, Grempel, Georges
(98)
 breakdown by 
exhaustion

B. Jones (2010)
RG on Kondo 
Breakdown
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A Drastic Change of the Fermi Surface at a Critical Pressure in CeRhIn5:

dHvA Study under Pressure

Hiroaki SHISHIDO, Rikio SETTAI, Hisatomo HARIMA1 and Yoshichika ŌNUKI

Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043
1Department of Physics, Faculty of Science, Kobe University, Kobe 657-8501

(Received December 22, 2004; accepted February 8, 2005)

We carried out the de Haas–van Alphen (dHvA) experiment for an antiferromagnet CeRhIn5 at high
pressures up to 3GPa. The cross-sectional areas of the Fermi surfaces due to main dHvA branches !i and
"2 at ambient pressure, which are well explained by two kinds of nearly cylindrical Fermi surfaces of a
non-4f reference compound LaRhIn5, are unchanged up to about 2.3GPa, while the corresponding
cyclotron masses m!

c increase steeply above a pressure P! ¼ 1:6GPa where pressure-induced
superconductivity sets in : m!

c = 5.5m0 at ambient pressure, 20m0 at 1.6GPa and 60m0 at 2.2GPa
for branch "2, for example. Above 2.4GPa, new dHvA branches appear, which are in good agreement
with the corresponding dHvA branches of a 4f-itinerant heavy fermion superconductor CeCoIn5,
indicating that the 4f electron of CeRhIn5 becomes itinerant and significantly contributes to the volume
of the Fermi surface. The 4f-electron character is thus changed from localized to itinerant at a critical
pressure Pc ’ 2:35GPa, where the superconducting transition temperature becomes a maximum.

KEYWORDS: CeRhIn5, dHvA effect, superconductivity, quantum critical point
DOI: 10.1143/JPSJ.74.1103

The cerium and uranium compounds form heavy fermions
at low temperatures, which is a consequence of competition
between the Ruderman–Kittel–Kasuya–Yosida (RKKY)
interaction and the Kondo effect. A high-pressure technique
is useful in tuning the electronic states in these compounds.
When pressure is applied to the magnetically ordered cerium
and uranium compounds, the ordering temperature Tmag

decreases and becomes zero (Tmag ! 0) at a critical pressure
P ¼ Pc. Surprisingly, superconductivity is observed around
Pc as in an antiferromagnet CeRhIn51) and a ferromagnet
UGe2.2)

CeTIn5 (T: Co, Rh and Ir) crystallizes in the tetragonal
crystal structure. The uniaxially distorted AuCu3-type layers
of CeIn3 and the TIn2 layers are stacked sequentially along
the ½001$ direction (c-axis). CeCoIn5 and CeIrIn5 reveal
superconductivity at ambient pressure,3) whereas CeRhIn5
orders antiferromagnetically below TN ¼ 3:8K. With in-
creasing pressure, the Néel temperature TN in CeRhIn5
increases, has a maximum around 1GPa, and decreases with
further increasing pressure. A smooth extrapolation indicates
TN ! 0 at a pressure P ¼ 2:3{2:5GPa. CeRhIn5, however,
reveals superconductivity over a wide pressure region from
P! ¼ 1:6 to 5.2 GPa.1,4,5) Its transition temperature Tsc has a
maximum around 2.3–2.5GPa, with Tsc ¼ 2:2K. This
pressure in the range of 2.3–2.5 GPa is supposed to be a
critical pressure Pc in CeRhIn5, where the antiferromagnetic
state is changed into a paramagnetic state and also the heavy
fermion state is most likely realized in this compound.

The topologies of the main Fermi surfaces in CeRhIn5 are
nearly cylindrical, and are found to be approximately the
same as thoes in a non-4f reference compound LaRhIn5, as
shown in Fig. 1(a), indicating that the 4f electron in
CeRhIn5 is localized and does not contribute to the volume
of the Fermi surfaces.6–8) In fact, an ordered moment of the
4f electron is about 0.8#B/Ce.9) On the other hand, the main
Fermi surfaces in CeCoIn5 without magnetic ordering are
also nearly cylindrical but are identified by the 4f -itinerant
band model, as shown in Fig. 1 (b).7,10) The topologies of the

two kinds of cylindrical Fermi surfaces in CeCoIn5 are
similar to thoes in CeRhIn5, but one 4f-electron in each Ce
site becomes a conduction electron in CeCoIn5. The detected
cyclotron masses in the range of 5–87m0 in CeCoIn5 are
extremely large, reflecting a large $ value of 1000mJ/
(K2%mol).3,10,11) It is noted that the d electrons in the T atom
hybridize with the 5p electrons of In in CeTIn5 and also
LaTIn5, which results in a small density of states around the
Fermi energy. This means that there are very few conduction
electrons in the TIn2 layer and hence the Fermi surface
mainly consists of the two kinds of cylindrical Fermi
surfaces shown in Fig. 1.

In order to elucidate the nature of the electronic state in
the pressure-induced superconductor CeRhIn5, we carried
out the de Haas–van Alphen (dHvA) experiment at high
pressures up to 2.1 GPa.5) The cyclotron effective mass of
the conduction electrons named branch "2 in Fig. 1(a)
increases from 5:5m0 at ambient pressure to 20m0 at

LETTERS

β2

(a) LaRhIn5
(CeRhIn5)

(b) CeCoIn5

α1

α3

α2

band 14 - electron

band 15 - electron

β1

β2

α1
α3

α2

β1

band 14 - electron

band 15 - electron

Fig. 1. Theoretical Fermi surfaces in (a) LaRhIn5 (CeRhIn5) and (b)
CeCoIn5. Small Fermi surfaces are not shown.
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Onuki’s group (05)5:56! 107 Oe (m"
c ¼ 15m0) in !1, 4:53! 107 Oe (18m0) in

!2 and 4:24! 107 Oe (8:4m0) in !3, as shown in Fig. 3(c).10)

The origin of branch A is not clear, but branch A is close to
branch " with F ¼ 1! 107 Oe in CeCoIn5, which was,
however, not observed experimentally along H k ½001% in
CeCoIn5.10) Here, branch " in CeCoIn5 is identified as a band
13-hole nearly spherical Fermi Fermi surface, not shown in
Fig. 1(b).

To elucidate a change of the Fermi surface properties
under pressure, we show in Figs. 4(a) and 4(b) the pressure
dependences of the dHvA frequency and the cyclotron mass,
respectively. The dHvA frequencies for the main dHvA
branches named "2, !1 and !2;3, together with those for
branches named a, b and c in Fig. 4(a) are approximately
unchanged up to about 2.3GPa, as reported previously,
although the previous experiments were carried out up to
2.1GPa.5) These branches, however, disappear completely at
2.35GPa, and another two branches with F ¼ 4:23! 107 Oe
(m"

c ’ 30m0) and 4:03! 107 Oe (20m0) appear. Further-
more, new branches !3 and A appear abruptly at 2.4GPa,
which are connected with the branches at 2.9 GPa.

We note that the branches at 2.35GPa appear from 1.8 to
2.35GPa, which are shown by small closed circles in Fig. 4.
The origin of these branches is unknown, but these branches
might be produced by a possible change of the antiferro-
magnetic structure, as observed in the similar dHvA experi-
ment under pressure for an antiferromagnet CeRh2Si2.14,15)

From the neutron scattering experiment, the helical magnetic
structure and the ordered moment were observed to be

almost unchanged up to 1.63GPa,9) but are not clear at
higher pressures.

Furthermore, we note that the present dHvA experiment
was carried out in high magnetic fields up to 169 kOe. Even
in the high fields, CeRhIn5 is in the antiferromagnetic state
at ambient pressure because the magnetization for H k ½001%
indicated neither a metamagnetic transition nor a saturated
feature in magnetic fields up to 500 kOe.16) The dHvA
branches a, b, etc., which are not observed in LaRhIn5, are
characteristic in an antiferromagnet CeRhIn5. These branch-
es are observed continuously in the present measured field
range even under pressures approximately up to Pc,
suggesting an antiferromagnetic state in the present dHvA
experiment.

As shown in Fig. 4, the cyclotron masses of main
branches "2 and !2;3 increase steeply above 1.6GPa, where
superconductivity sets in: 5:5m0 at ambient pressure, 20m0

at 1.6GPa and 60m0 at 2.2GPa for branch "2, where the
cyclotron mass was determined in the field range from 100
to 169 kOe, namely at an effective field Heff ¼ 126 kOe.
This is approximately consistent with the pressure depend-
ence of the # value : 50–60mJ/(K2&mol) at ambient pressure
and 380mJ/(K2&mol) at 2.1 GPa.13) On the other hand, the

1086420
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Fig. 3. (a) dHvA oscillation at 2.9GPa in CeRhIn5 and (b) its FFT
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Pressure induced SC and Fermi surface reconfiguration  in 115

of branch b2 ðm!
c ¼ 5:7m0Þ at ambient pressure reaches

about 40m0 at 2 GPa:
Fig. 2(b) shows the pressure dependence of the

cyclotron mass m!
c of branch b2 in CeCoIn5 which was

determined at H ¼ 14 T: The cyclotron mass decreases
with increasing pressure. The cyclotron mass of branch
b2 ðm!

c ¼ 58m0Þ at ambient pressure decreases down to
38m0 at 3 GPa: We note that the cyclotron mass is
strongly field-dependent at ambient pressure [7], but the
cyclotron mass is unchanged on the field at about
3 GPa:

These results indicate that CeRhIn5 approaches the
quantum critical region with increasing pressure, while
CeCoIn5 deviates from it with increasing pressure.

This work was financially supported by the Grant-in-
Aid for COE Research (10CE 2004) from the Ministry
of Education, Culture, Sports, Science and Technology
of Japan.
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Fermi Liquid  ? 

T 

x 

AF 

Spin Gap 
Pair fluctuations? 

T  - ONLY ENERGY SCALE 

SC 

QCP  ?  
Do we understand QCPs 
where the order parameter is uncontraversial? 

High Tc: QCP may play 

a vital role in setting the 

normal state properties. 

Quantum criticality
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Theoretical approaches
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UV High energy physics – microscopic hamiltonian

IR
Low energy, slow, universal part

Integrate out the “fast” 
degrees of freedom

Low energy properties Universality
Universality
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UV High energy physics – microscopic hamiltonian

IR
Low energy, slow, universal part

Integrate out the “fast” 
degrees of freedom

Low energy properties Universality

Landau Fermi liquid theory  verified by
``all ‘’ conductors above 1D

Universal
exponents

What is observed around some QCP
 in heavy fermions

Universal
Too!

Universality
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effective bosonic theory

Can we integrate the fermions out of the partition function?

fermions are mass-less but fast
compared to bosons? fermions

bosons

k

For example z=2
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effective bosonic theory
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Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
m=mB.

One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions $with the propagator given by Eq.
"2.1#% and long-wavelength collective spin excitations whose
propagator "the spin susceptibility# is analytic near q=0 and
"=0:

#s,0"q,"# =
#0

$−2 + q2 + A"2 + O"q4,"4#
. "2.3#

Here A is a constant, and $ is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the "2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one #s,0"q#. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:

Hsf = &
k,%

!kck,%
† ck,% + &

q
#s,0

−1"q#SqS−q

+ g &
k,q,%,&

ck,%
† !%&ck+q,& · Sq, "2.4#

where != "'x ,'y ,'z# are Pauli matrices. Here Sq with q
() /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
U"q# and assume that only the forward scattering is relevant
$U"0#=U%:

H = &
k,%

!kck,%
† ck,% +

1
2&

q
U &

k,k!,%,&

ck,%
† ck+q,%ck!&

† ck!−q,&.

"2.5#

In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices !%& ·!*+=−+%&+*++2+%++&*,
one can demonstrate31 that in each of the channels, the
random-phase approximation "RPA# summation is exact, and
the fully renormalized four-fermion interaction U%&,*,

full "q# is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity "2.2#
m bare quasiparticle mass, m=kF /vF "2.2#
m* effective "renormalized# quasiparticle mass "4.8#
mB band mass, determines the curvature of the Fermi

surface
"2.2#

g spin-fermion coupling constant "2.4#
$ ferromagnetic correlation length "2.3#
#0$2 value of the spin susceptibility at q=0 "2.3#
N number of fermionic flavors
ḡ=g2#0 effective four-fermion interaction "4.6#
*= Nmḡ

-vF
Landau damping coefficient "4.5#

.= 3ḡ$
4-vF

dimensionless coupling constant, it measures the
mass enhancement: .= m*

m −1
"4.6#

/0= 3'3ḡ3

8-3*vF
3 ( ḡ2

NEF
frequency up to which 0"/# dominates over / in

the fermionic propagator
"4.9#

/Max='*vF
3 ('NḡEF frequency up to which the fermionic and the

bosonic mass shells are well separated
"5.3#

%= ḡ2

*vF
3 ( ḡ

NEF
small parameter, measuring the slowness of the
bosonic modes compared to the fermionic ones;

the same small parameter justifies the low-energy
description

"5.1#

&=
mB

mN
small parameter related to the curvature of the

fermionic dispersion
"5.13#
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4-vF

dimensionless coupling constant, it measures the
mass enhancement: .= m*

m −1
"4.6#

/0= 3'3ḡ3
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-vF
Landau damping coefficient "4.5#

.= 3ḡ$
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FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 = k2

F
a2

(

2π
mU − 1

)

(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)
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Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ
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C. Summary

We have shown in this section that there are two con-
ditions for the validity of the Eliashberg theory that one
can recast as the smallness of two parameters:

α ∼
ḡ2

γv3
F

∼
ḡ

NEF
" 1 β ∼

mḡ

γvF
∼

mB

Nm
" 1.

(5.34)
The first condition is quite generic for a low-energy

theory since it requires that the fermion-fermion inter-
action mediated by the exchange of a boson should be
smaller than the Fermi energy. Otherwise, the physics
is not restricted to the vicinity of the Fermi surface any-
more. The parameter α plays the same role as the Migdal
parameter for the electron-phonon interaction: it sets the
condition that fermions are fast excitations compared to
bosons. In the scattering processes that are small in α,
fermions are forced by the interaction to vibrate at fre-
quencies near the bosonic mass shell.They are then far
from their own resonance and thus have a small spectral
weight.

However, the condition α " 1 is not sufficient to
construct a fully controllable perturbation expansion
around the non-Fermi liquid state at the QCP. In spa-
tially isotropic systems there exist vertex corrections for
which the external momentum has a component on the
fermionic mass-shell. These corrections don’t contain α.
However, these corrections are sensitive to the curvature
of the Fermi surface, and are small if β is small which can
be achieved either by imposing mB " m or by extending
the theory to a large number N of fermionic flavors.

A word of caution. In evaluating the renormalization
of the static vertex, we silently assumed that

√
α " β,

i.e., ḡ/EF < (mB/m)2/N . At very large N , this is no
longer valid. For this situation, i.e., when β "

√
α, our

estimates show that the static vertex is even smaller than√
α.
Finally, the pairing vertex in the Cooper channel stays

of order O(1), signaling the possibility of a pairing insta-
bility close to the quantum critical point. Nevertheless,
we assume, based on explicit calculations worked out in
[8], that the quantum critical behavior extends in the pa-
rameter space to a region where the superconductivity is
not present.

VI. INSTABILITY OF THE FERROMAGNETIC
QUANTUM CRITICAL POINT

We found that the Eliashberg theory for fermions in-
teracting with gapless long-wavelength bosons is stable
and controlled by two small parameters. We verified this
by calculating the fermionic self-energy in a two-loop ex-
pansion around the Eliashberg solution

One may wonder whether the same conclusions hold
for the bosonic self-energy as well. In particular, what
are the corrections to the static susceptibility χs(q, 0)?

Naively one could assume that they are unimportant and
do not change the bare q2 behavior of the inverse bosonic
propagator at the QCP.

For a ferromagnetic SU(2) QCP, for which the mass-
less bosons are spin fluctuations, we show in this section
that the corrections to the static spin susceptibility are
non-analytic: they scale like q3/2, and do not contain any
pre-factor except for a proper power of kF . Such terms
obviously overshadow the regular q2 of the bare suscep-
tibility at small enough momenta. These terms therefore
belong to Eliashberg theory, which has to be extended to
incorporate them.

The physics behind the q3/2 term in χ(q, 0) at a
ferromagnetic QCP is, by itself, not directly related
to criticality: far away from the QCP, the spin sus-
ceptibility also contains negative, non-analytic |q| term
[24, 25, 26, 27, 28, 29]. This term gradually evolves as
the correlation length ξ increases, and transforms into
the q3/2 term at the QCP. Both these non-analyticities,
at and away from the QCP, emerge because the boson-
mediated interaction between fermions contain a long-
range dynamic component, generated from the Landau
damping.

For charge fluctuations, the q3/2 terms appear in the
individual diagrams for the susceptibility but cancel out
in the full formula for χ(q,Ω). We discuss the physical
origin of the difference between spin and charge suscep-
tibilities in the next section.

One of the reasons why the non-analyticity of the static
spin susceptibility at the QCP has not been analyzed
much earlier is because it was widely believed that an
itinerant fermionic system near a ferromagnetic QCP is
adequately described by a phenomenological 2 + 1D φ4

bosonic theory (in our case, the role of φ is played by
the vector field S) with the dynamic exponent z = 3 and
a constant pre-factor for the φ4 term [1]. In dimensions
d ≥ 4 − z = 1, the model lies above its upper critical
dimension and the φ4 term is simply irrelevant.

In this section, we derive the effective φ4 theory from
the spin-fermion model Hamiltonian, and show that it
contains two new elements absent from the phenomeno-
logical approach. First, the pre-factor of the φ4 term
strongly depends on the ratio between the external mo-
menta and frequencies, and contains a non-analytic term
in addition to the constant one. Second, there also exists
a cubic φ3 term whose pre-factor, although vanishing in
the static limit, also strongly depends on the interplay
between the external momenta and frequencies. We can
recast the non-analytic q3/2 term in the static spin sus-
ceptibility as arising from these cubic and quartic terms
in φ.

We also prove that the non-analyticity appears in
the temperature-dependent uniform static susceptibility
χs(T ). e show below that χ−1

s (T ) ∝ T | logT |, again with
a negative pre-factor.

Finally, we show that the instability of the ferromag-
netic QCP can also be seen from the fermionic self-energy,
which acquires singular terms beginning at the three-loop

!k = vFk! +
k!

2

2mB
. "2.2#

Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
m=mB.

One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions $with the propagator given by Eq.
"2.1#% and long-wavelength collective spin excitations whose
propagator "the spin susceptibility# is analytic near q=0 and
"=0:

#s,0"q,"# =
#0

$−2 + q2 + A"2 + O"q4,"4#
. "2.3#

Here A is a constant, and $ is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the "2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one #s,0"q#. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:

Hsf = &
k,%

!kck,%
† ck,% + &

q
#s,0

−1"q#SqS−q

+ g &
k,q,%,&

ck,%
† !%&ck+q,& · Sq, "2.4#

where != "'x ,'y ,'z# are Pauli matrices. Here Sq with q
() /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
U"q# and assume that only the forward scattering is relevant
$U"0#=U%:

H = &
k,%

!kck,%
† ck,% +

1
2&

q
U &

k,k!,%,&

ck,%
† ck+q,%ck!&

† ck!−q,&.

"2.5#

In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices !%& ·!*+=−+%&+*++2+%++&*,
one can demonstrate31 that in each of the channels, the
random-phase approximation "RPA# summation is exact, and
the fully renormalized four-fermion interaction U%&,*,

full "q# is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity "2.2#
m bare quasiparticle mass, m=kF /vF "2.2#
m* effective "renormalized# quasiparticle mass "4.8#
mB band mass, determines the curvature of the Fermi

surface
"2.2#

g spin-fermion coupling constant "2.4#
$ ferromagnetic correlation length "2.3#
#0$2 value of the spin susceptibility at q=0 "2.3#
N number of fermionic flavors
ḡ=g2#0 effective four-fermion interaction "4.6#
*= Nmḡ

-vF
Landau damping coefficient "4.5#

.= 3ḡ$
4-vF

dimensionless coupling constant, it measures the
mass enhancement: .= m*

m −1
"4.6#

/0= 3'3ḡ3
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3 ( ḡ2

NEF
frequency up to which 0"/# dominates over / in

the fermionic propagator
"4.9#

/Max='*vF
3 ('NḡEF frequency up to which the fermionic and the

bosonic mass shells are well separated
"5.3#

%= ḡ2

*vF
3 ( ḡ

NEF
small parameter, measuring the slowness of the
bosonic modes compared to the fermionic ones;

the same small parameter justifies the low-energy
description

"5.1#

&=
mB

mN
small parameter related to the curvature of the

fermionic dispersion
"5.13#
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-vF
Landau damping coefficient "4.5#

.= 3ḡ$
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FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 = k2

F
a2

(

2π
mU − 1

)

(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)
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The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
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ing the SU(2) spin symmetry. The Hamiltonian (2.4)
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with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:
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distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
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∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
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region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
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C. Summary

We have shown in this section that there are two con-
ditions for the validity of the Eliashberg theory that one
can recast as the smallness of two parameters:

α ∼
ḡ2

γv3
F

∼
ḡ

NEF
" 1 β ∼

mḡ

γvF
∼

mB

Nm
" 1.

(5.34)
The first condition is quite generic for a low-energy

theory since it requires that the fermion-fermion inter-
action mediated by the exchange of a boson should be
smaller than the Fermi energy. Otherwise, the physics
is not restricted to the vicinity of the Fermi surface any-
more. The parameter α plays the same role as the Migdal
parameter for the electron-phonon interaction: it sets the
condition that fermions are fast excitations compared to
bosons. In the scattering processes that are small in α,
fermions are forced by the interaction to vibrate at fre-
quencies near the bosonic mass shell.They are then far
from their own resonance and thus have a small spectral
weight.

However, the condition α " 1 is not sufficient to
construct a fully controllable perturbation expansion
around the non-Fermi liquid state at the QCP. In spa-
tially isotropic systems there exist vertex corrections for
which the external momentum has a component on the
fermionic mass-shell. These corrections don’t contain α.
However, these corrections are sensitive to the curvature
of the Fermi surface, and are small if β is small which can
be achieved either by imposing mB " m or by extending
the theory to a large number N of fermionic flavors.

A word of caution. In evaluating the renormalization
of the static vertex, we silently assumed that

√
α " β,

i.e., ḡ/EF < (mB/m)2/N . At very large N , this is no
longer valid. For this situation, i.e., when β "

√
α, our

estimates show that the static vertex is even smaller than√
α.
Finally, the pairing vertex in the Cooper channel stays

of order O(1), signaling the possibility of a pairing insta-
bility close to the quantum critical point. Nevertheless,
we assume, based on explicit calculations worked out in
[8], that the quantum critical behavior extends in the pa-
rameter space to a region where the superconductivity is
not present.

VI. INSTABILITY OF THE FERROMAGNETIC
QUANTUM CRITICAL POINT

We found that the Eliashberg theory for fermions in-
teracting with gapless long-wavelength bosons is stable
and controlled by two small parameters. We verified this
by calculating the fermionic self-energy in a two-loop ex-
pansion around the Eliashberg solution

One may wonder whether the same conclusions hold
for the bosonic self-energy as well. In particular, what
are the corrections to the static susceptibility χs(q, 0)?

Naively one could assume that they are unimportant and
do not change the bare q2 behavior of the inverse bosonic
propagator at the QCP.

For a ferromagnetic SU(2) QCP, for which the mass-
less bosons are spin fluctuations, we show in this section
that the corrections to the static spin susceptibility are
non-analytic: they scale like q3/2, and do not contain any
pre-factor except for a proper power of kF . Such terms
obviously overshadow the regular q2 of the bare suscep-
tibility at small enough momenta. These terms therefore
belong to Eliashberg theory, which has to be extended to
incorporate them.

The physics behind the q3/2 term in χ(q, 0) at a
ferromagnetic QCP is, by itself, not directly related
to criticality: far away from the QCP, the spin sus-
ceptibility also contains negative, non-analytic |q| term
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Here k is the momentum deviation from kF, the parallel and
perpendicular components are with respect to the direction
along the Fermi surface at kF, mB is the band mass, the Fermi
velocity vF=kF /m, and for a circular Fermi surface one has
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One can then re-cast the original model of fermion-
fermion interaction into an effective low-energy fermion-
boson model. Consider for definiteness that the system is
close to a ferromagnetic QCP. Then the low-energy degrees
of freedom are fermions $with the propagator given by Eq.
"2.1#% and long-wavelength collective spin excitations whose
propagator "the spin susceptibility# is analytic near q=0 and
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Here A is a constant, and $ is the correlation length, which
becomes infinite at the QCP. We prove in the next section
that the "2 term does not play any role in our analysis, and
we therefore neglect it for now and approximate the above
bare propagator by the static one #s,0"q#. The model can then
be described by the phenomenological spin-fermion Hamil-
tonian:
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where != "'x ,'y ,'z# are Pauli matrices. Here Sq with q
() /vF are vector bosonic variables, and g is the effective
fermion-boson interaction. For convenience, we incorporated
the fermionic residue Z0 into g.

To illustrate how this effective Hamiltonian can, in prin-
ciple, be derived from the microscopic model of interacting
conduction electrons, we consider a model in which the elec-
trons interact with a short-range four-fermion interaction
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In this situation, the interaction is renormalized indepen-
dently in the spin and in the charge channels.31 Using the
identity for the Pauli matrices !%& ·!*+=−+%&+*++2+%++&*,
one can demonstrate31 that in each of the channels, the
random-phase approximation "RPA# summation is exact, and
the fully renormalized four-fermion interaction U%&,*,

full "q# is
given by

TABLE I. List of the various parameters used in the text, their expression before the rescaling in N, and
the reference equation where it is defined in the text.

Expression Definition Eq.

vF Fermi velocity "2.2#
m bare quasiparticle mass, m=kF /vF "2.2#
m* effective "renormalized# quasiparticle mass "4.8#
mB band mass, determines the curvature of the Fermi

surface
"2.2#
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$ ferromagnetic correlation length "2.3#
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3 ('NḡEF frequency up to which the fermionic and the

bosonic mass shells are well separated
"5.3#

%= ḡ2
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fermionic dispersion
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FIG. 1: a) Polarization bubble b) One-loop fermionic self-
energy c) Two-loop fermionic self-energy.

Sq, one recasts (2.8) into Eq. (2.4) with:















g = U a
2

χ0 = 2 k2

F
Ua2

ḡ = g2χ0 = (U/2)k2
F

ξ−2 = k2

F
a2

(

2π
mU − 1

)

(2.9)

The QCP is reached when mU/2π = 1, i.e., ξ−2 = 0.
This coincides with the Stoner criterion for a ferromag-
netic instability [34].

We emphasize that the bosonic propagator in Eq. (2.3)
does not contain the Landau damping term. This is be-
cause we only integrated out the high-energy fermions,
whereas the Landau damping of a collective mode of en-
ergy Ω comes from fermions of energy ω < Ω, and can
only be generated within the low-energy theory. The dy-
namics of both the bosonic fields Sq and the fermionic
c and c† is determined self-consistently by treating both
fluctuations on equal footing.

To put under control the computations carried out
later in the paper, it is necessary to extend the model
by introducing N identical fermion species, while keep-
ing the SU(2) spin symmetry. The Hamiltonian (2.4)
can then be rewritten as:

Hsf = Hf + Hb + Hint where

Hf =
∑

k,j,α

εkc†k,j,αck,j,α

Hb =
∑

q

χ−1
s,0(q)Sq · S−q

Hint = g
∑

k,q,j,α,β

c†k,j,ασαβck+q,j,β · Sq, (2.10)

where the index j = 1 . . .N labels the fermionic species.
We use the spin-fermion Hamiltonian of Eq. (2.10)

as the starting point of our analysis. In the case of a
QCP in the charge channel, or a ferromagnetic instability
with Ising symmetry, the bosonic vector field S becomes
a scalar field designated as φ. The interacting term is also
modified, the Pauli matrices being replaced by δαβ for the
interaction with charge fluctuations, and by σZ

αβ in the
Ising case. The corresponding interaction Hamiltonians
are:

{

HCharge
int = g

∑

k,q,j,α,β c†k,j,αδαβck+q,j,βφq

HIsing
int = g

∑

k,q,j,α,β c†k,j,ασZ
αβck+q,j,βφq

(2.11)

III. DIRECT PERTURBATION THEORY

In this section we compute the fermionic and bosonic
self-energies for the model presented in Eq. (2.4) using a
perturbation expansion around non-interacting fermions.
Our goal here is three-fold: to relate the Landau damping
coefficient to the fermion-boson coupling constant g, to
distinguish between Σ(ω) and Σ(k) and to demonstrate
the importance of the curvature of the Fermi surface.

We evaluate the self-energy in this section up to two-
loop order. We verified that to this order, there is no
qualitative difference between the quantum critical point
in the spin or in the charge channel. We then restrict our
presentation to the spin-fermion model near a ferromag-
netic QCP.

A. Bosonic self-energy: the Landau damping term

The full bosonic propagator depends on the self-energy
Π(q,Ω) according to:

χs(q,Ω) =
χ0

ξ−2 + q2 + Π(q,Ω)
. (3.1)

At the lowest order in the spin-fermion interaction, the
bosonic self-energy is given by the first diagram in Fig.
1, and reads:

Π(q,Ω) = 2Nḡ

∫

d2k dω

(2π)3
G(k, ω) G(k+q, ω+Ω). (3.2)

The curvature of the fermionic dispersion does not af-
fect much the result of this computation as it only leads
to small corrections in q/mBvF . Neglecting the quadratic
term in the fermionic propagators, we introduce the an-
gle θ defined as εk+q = εk + vF q cos θ and perform the
integration over εk, which gives us:

Π(q,Ω) = i
Nḡm

2π2

∫ +∞

−∞
dω (θ(ω + Ω) − θ(ω))

×
∫ 2π

0
dθ

1

iΩ− vF q cos θ

=
Nmḡ

π

|Ω|
√

(vF q)2 + Ω2
. (3.3)

At the QCP, the bosonic mass-shell corresponds to the
region of momentum and frequency space for which the
terms in the inverse propagator are of the same order, i.e.
near a mass shell q and Ω satisfies Π(q,Ω) ∼ q2. It follows
that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
vF (mḡv2

F /Ω2)1/3 $ 1 at small enough frequency, so that
vF q is the largest term in the denominator of Π(q,Ω).
The expression of the bosonic self-energy then reduces
to:

Π(q,Ω) = γ
|Ω|
q

, (3.4)
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that, at the QCP, near the bosonic mass shell, vF q/Ω ∼
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FIG. 5: Corrections to the polarization bubble from diagrams
with one and two extra bosonic lines

this, it is useful to expand the products of Green’s func-
tions according to:

G(ω1, k1)G(ω2, k2) =
G(ω1, k1) − G(ω2, k2)

G−1(ω2, k2) − G−1(ω1, k1)
.

(6.13)
Applying this to Π2(q, 0), we find that it splits into

two parts. In one part, the poles in εk are located in
the same half-plane, leading to a vanishing contribution.
The remaining term in Π2(q, 0) is related to Π1(q, 0) in
such a way that:

Π1(q, 0) = −
2Γ1

Γ2
Π2(q, 0). (6.14)

(see Appendix D for details).
Similarly, Π3(q, 0) and Π4(q, 0) are related as

Π3(q, 0) = −
Γ3

Γ4
Π4(q, 0). (6.15)

Collecting all four contributions and using the relations
between pre-factors, we obtain:

Π(q, 0) = ΠA(q, 0) + ΠB(q, 0) , (6.16)

ΠA(q, 0) = Π1(q, 0) + 2Π2(q, 0)

= 16
Nḡ2

(2π)6

∫

d2Kdωd2ldΩ χs(l,Ω)G(ω, k)2

×G(ω + Ω, k + l)G(ω, k + q) ,

ΠB(q, 0) = Π3(q, 0) + Π4(q, 0)

= 16
N2ḡ3

(2π)9χ2
0

∫

d2kdωd2k′dω′dldΩ χs(l,Ω)

×χs(q + l,Ω) G(ω, k) G(ω, k + q)

×G(ω + Ω, k + l + q) G(ω′, k′ + q)

×G(ω′, k′) G(ω′ + Ω, k′ + l + q) (6.17)

1. Fermi-liquid regime

Away from criticality, the correlation length ξ is finite,
and at low frequency, the system is in the Fermi-liquid
regime. The fermionic self-energy is Σ(ω) = λω, Eq.
(4.7).

The spin susceptibility in this regime has been ana-
lyzed in [25, 26, 27, 28, 29, 37]. It was shown there that to
the lowest order in the interaction, ΠB(q, 0) = ΠA(q, 0),
i.e., Π(q, 0) = 2ΠA(q, 0). Beyond leading order, ΠB(q, 0)
and ΠA(q, 0) are not equivalent but are of the same sign
and of comparable magnitude. For simplicity, we assume
that the relation ΠB(q, 0) = ΠA(q, 0) holds in the whole
Fermi liquid regime. We will see below that even at the
QCP, ΠB(q, 0) and ΠA(q, 0) are quite similar (at QCP
ΠB(q, 0) ≈ 1.3ΠA(q, 0)).

Introducing cos θ = k·l
|k||l| and cos θ′ = k·q

|k||q| , and suc-

cessively integrating over |k|, ω and θ′, (6.16) can be
rewritten as:

Π(q, 0) =
8ḡ|q|

π3(1 + λ)vF

∫ ∞

0
dz

∫ π
2

0
dφ

∫ π

0
dθ

1
1

γ̃ξ2 + tanφ

cosφ sin φ

(i sinφ − cos θ cosφ)2

×
z

√

1 + z2(sin φ + i cosφ cos θ)2
,

(6.18)

where we defined γ̃ = γvF

1+λ , and introduced the new vari-

ables z and φ, which satisfy z cosφ = l
q and z sin φ =

(1+λ)Ω
vF q .
The universal part of Π(q, 0) can be isolated by sub-

tracting from it the constant part Π(0, 0). The integral
over z then becomes convergent. Integrating successively
over z, φ and θ, we obtain:

Π(q, 0) = −
4

π2

ḡ

vF (1 + λ)
|q| H

(

1 + λ

γ̃ξ2

)

, (6.19)

where H(0) = 1
3 , and H(x $ 1) ≈ 2/(3x2) We do re-

cover the non-analytic |q| correction to the static spin
susceptibility in D = 2, as obtained in earlier studies
[24, 25, 26, 27].

Note that Eq. (6.20) does not contradict the Fermi
liquid relation χs(q → 0, ω = 0) ∝ (1 + F1,s)/(1 + F0,a),
where F1,s and F0,a are Landau parameters. The Fermi
liquid theory only implies that the static spin suscepti-
bility saturates to a constant value as q → 0, but does
not impose any formal constraint on the q−dependence
of χs(q, ω).

As one gets closer to the QCP, λ = 3ḡ/(4πvSξ−1) di-
verges and the pre-factor of the |q| term vanishes as:

Π(q, 0) = −
16

9π
ξ−1|q|. (6.20)

This is not surprising since the Fermi liquid regime ex-
tends on a region of the phase diagram that shrinks and
ultimately vanishes as one approaches the QCP.

Now, two different scenarios are possible:

• the divergence of ξ at the QCP completely elim-
inates the non-analyticity and the expansion of
Π(q, 0) begins as q2, like in a bare spin suscepti-
bility,

Belitz, Vojta, Kirkpatrick(03), Chubukov, Maslov (07)
Green, ben Simon(11)

|q| ! d = 2

q2 log q ! d = 3
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And the culprit is ...
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2kF - scattering processes

• FS deformed at the hot spots
• anomalous exponents 

  affecting AFM, nematic, and Ferro       

  the back -scattering
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2kF - scattering processes

i!k0. Here E! is a crossover energy scale below which phys-
ics is described by the scale-invariant universal theory. To
study the low-energy physics, we will fix our energy scale E
and send a UV cutoff " and the crossover scale E! to
infinity.24 In taking the low-energy limit, it is convenient to
maintain the UV cutoff " to be smaller than the crossover
scale, that is,

E # " # E!. !7"

First, a Feynman diagram with an external energy E is com-
puted with finite !, " and N. To maintain #Eq. !7"$, we take
the !→0 limit first and then "→$ limit later. Finally, we
take the large N limit. This amounts to imposing condition
!7" for all N as N is progressively increased in the large N
limit. In this way, we can keep the bare time derivative term
to be always smaller compared to the singular self-energy at
all energy scales. In this limit, not only the IR physics but
also the UV physics is controlled by the same universal
theory. This is particularly convenient to study universal
low-energy dynamics of the theory at the critical dimension
which is dc=2+1 in this case. This is because any logarith-
mic IR divergence is reflected to a UV divergence and one
can read the renormalization group flow by keeping track of
UV divergences. We will exploit this property to study dy-
namical properties of the theory in Sec. IV.

The action #Eq. !5"$ has four terms which are marginal at
the one-loop level. On the other hand, there are five param-
eters that set the scales of energy momentum and the fields.
Out of the five parameters, only four of them can modify the
coefficients of the marginal terms because the marginal terms
remain invariant under the transformation #Eq. !3"$. Using
the remaining four parameters, one can always rescale the
coefficients of the marginal terms to arbitrary values. There-
fore, there is no dimensionless parameter in this theory ex-
cept for the fermion flavor N. In the following, we will set
vx=vy =e=1. With this choice, c and % in Eq. !2" are auto-
matically on the order of 1. The coefficients of the nonlocal
terms are not independent tunable parameters because those
parameters are completely determined from the local terms.

III. 1 ÕN EXPANSION

A. Failure of a perturbative 1 ÕN expansion

In the naive counting of power in 1 /N, a vertex contrib-
utes N−1/2 and a fermion loop contributes N1. In this count-
ing, only the fermion RPA diagram !Fig. 2" is on the order of
1 and all other diagrams are of higher order in 1 /N. In the
leading order, the propagators become

g0!k" =
1

i!k0 + kx + ky
2 ,

D!k" =
1

%
%k0%
%ky%

+ ky
2

. !8"

One can attempt to compute the full quantum effective
action by including 1 /N corrections perturbatively. However,
we will see that this naive 1 /N expansion breaks down in the
low-energy limit. To see this, let us consider a two-loop ver-
tex correction shown in Fig. 4,

&!p,p + q" = − N−3/2& dkdl g0!k"g0!k + q"

'g0!k + l"g0!p + l"D!l"D!l − q" . !9"

Let us focus on the case with p=0. Without loss of general-
ity, we can assume q0 ,qy (0. Integrating over kx, ky, and lx,
one obtains

&!0,q" = − N−3/2& dl0dlydk0
F!l0,ly,k0,q0,qy"

ly)q + i!lyq0
, !10"

where

F!l0,ly,k0,q0,qy" = 4*3i#+!l0 + k0" − +!l0"$

' #+!k0 + q0" − +!k0"$

'#+!qy − ly" − +!qy"$D!l"D!l − q"
!11"

is a function which is independent of ! and N, with +!x"
being a step function, and )q=qx+qy

2 is the “distance” of q
from the Fermi surface. If the final momentum of the fer-
mion is also on the Fermi surface, that is, )q=0, the vertex
correction becomes

&!0,q" = −
N−3/2

!q0
1/3 f1!qy/q0

1/3" , !12"

where f1!t" is a nonsingular universal function which is in-
dependent of N and !,

FIG. 3. The one-loop fermion self-energy. Here the boson
propagator is a dressed propagator which include the one-loop self-
energy correction in Fig. 2.
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FIG. 4. A two-loop vertex correction.
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f1!t" = 4!3#
−1

0

dx#
0

$x$
dy#

1

"

dz

#
t2!z − 1"

%$y + !tz"3&%$!1 − y" + t3!z − 1"3&
. !13"

In the %→0 limit, this two-loop vertex correction which
connects two fermions on the Fermi surface diverges. This
divergence is quite generic: a vertex function which connects
fermions on the Fermi surface diverges as 1 /%n for some
integer n in general. The physical reason for this divergence
is simple. In the %→0 limit, the bare fermion propagator is
independent of frequency and the integration over frequen-
cies is ill defined. This divergence is unphysical in the sense
that it disappears once the frequency-dependent fermion self-
energy correction is included. If one include the one-loop

fermion self-energy !Fig. 3", the dressed fermion propagator
becomes

g!k" =
1

i%k0 + i
c

N
sgn!k0"$k0$2/3 + kx + ky

2
!14"

and the 1 /% divergence disappears. Instead, the resulting fi-
nite term becomes enhanced by a factor of Nn for some in-
teger n&0 because the zero in the denominator !in the %
→0 limit" is replaced by a term which is proportional to
1 /N. As a result, the two-loop vertex correction shown in
Fig. 4 becomes

'!0,q" = − N−1/2f2!qy/q0
1/3" , !15"

where f2!t" is a nonsingular universal function which is in-
dependent of N and %,

f2!t" =
4!3

c
#

−1

0

dx#
0

$x$
dy#

1

"

dz
1

$x + 1$2/3 + y2/3 + $x + y$2/3 + !z − 1"!$x + 1$2/3 + $x$2/3"
t2z!z − 1"

%$y + !tz"3&%$!1 − y" + t3!z − 1"3&
.

!16"

The additional factor of N is from the enhancement factor
that arises due to the 1 /% divergence when the fermions are
on the Fermi surface. With the inclusion of the fermion self-
energy, the IR divergence in Eq. !12" has been traded with an
enhanced power in N in Eq. !15".

Similar enhancement factors arise in other diagrams as
well. For example, a three-loop fermion self-energy correc-
tion shown in Fig. 5 is on the order of N−2 according to the
naive counting. However, the self-energy of fermion on the
Fermi surface !(p=0" diverges as 1 /% in the %→0 limit if
the bare fermion propagator in Eq. !8" is used. If one in-
cludes the one-loop self-energy of fermion, it becomes on the
order of N−1,

)!p" = − i
c3

N
sgn!p0"$p0$2/3, !17"

when the external fermion is on the Fermi surface. Here c3 is
a universal constant on the order of 1.

This discrepancy between the cases with a finite % and an
infinitesimally small % can be understood is the following
way. With a finite %, there is a crossover around the scale
q0'E%. For q0*E%, the i%k0 is dominant in the fermion

propagator and a Feynman diagram obeys the naive counting
in 1 /N. On the other hand, for q0+E% quantum fluctuations
are controlled by the nonlocal term which is suppressed by
1 /N. The enhanced quantum fluctuations at low energies
lead to an enhancement factor by a positive power in N.
Since we are concerned about the low-energy physics, we
should consider the latter limit. This correct low-energy limit
is automatically taken by considering the %→0 limit with a
fixed energy scale q0. This enhancement in the power of N at
IR is a manifestation of the fact that quantum fluctuations
become stronger at low-energies.

B. Genus expansion

In the low-energy limit, what determines the power of a
Feynman diagram in 1 /N? To answer this question, one
should understand the origin of the enhancement factor dis-
cussed in the previous section more systematically. In the
present section, we will develop a simple geometrical way of
determining power of general Feynman graphs.

First, we illustrate the basic idea using the example !Fig.
4" considered in the previous section. As we have seen in the
previous section, the enhancement factor N is a consequence
of the 1 /% singularity in the %→0 limit. To understand the
origin of the 1 /% singularity, it is useful to examine the way
fermions are scattered near the Fermi surface. Suppose both
p and p+q are on the Fermi surface in Fig. 4. In the fermion
loop with running momentum k, the momentum of the fer-
mion consecutively becomes k , !k+q" , !k+ l" as a result of
scatterings. For a given external momentum q of the boson,
one can always choose the spatial momentum k to make bothFIG. 5. A three-loop fermion self-energy correction.
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i!k0. Here E! is a crossover energy scale below which phys-
ics is described by the scale-invariant universal theory. To
study the low-energy physics, we will fix our energy scale E
and send a UV cutoff " and the crossover scale E! to
infinity.24 In taking the low-energy limit, it is convenient to
maintain the UV cutoff " to be smaller than the crossover
scale, that is,

E # " # E!. !7"

First, a Feynman diagram with an external energy E is com-
puted with finite !, " and N. To maintain #Eq. !7"$, we take
the !→0 limit first and then "→$ limit later. Finally, we
take the large N limit. This amounts to imposing condition
!7" for all N as N is progressively increased in the large N
limit. In this way, we can keep the bare time derivative term
to be always smaller compared to the singular self-energy at
all energy scales. In this limit, not only the IR physics but
also the UV physics is controlled by the same universal
theory. This is particularly convenient to study universal
low-energy dynamics of the theory at the critical dimension
which is dc=2+1 in this case. This is because any logarith-
mic IR divergence is reflected to a UV divergence and one
can read the renormalization group flow by keeping track of
UV divergences. We will exploit this property to study dy-
namical properties of the theory in Sec. IV.

The action #Eq. !5"$ has four terms which are marginal at
the one-loop level. On the other hand, there are five param-
eters that set the scales of energy momentum and the fields.
Out of the five parameters, only four of them can modify the
coefficients of the marginal terms because the marginal terms
remain invariant under the transformation #Eq. !3"$. Using
the remaining four parameters, one can always rescale the
coefficients of the marginal terms to arbitrary values. There-
fore, there is no dimensionless parameter in this theory ex-
cept for the fermion flavor N. In the following, we will set
vx=vy =e=1. With this choice, c and % in Eq. !2" are auto-
matically on the order of 1. The coefficients of the nonlocal
terms are not independent tunable parameters because those
parameters are completely determined from the local terms.

III. 1 ÕN EXPANSION

A. Failure of a perturbative 1 ÕN expansion

In the naive counting of power in 1 /N, a vertex contrib-
utes N−1/2 and a fermion loop contributes N1. In this count-
ing, only the fermion RPA diagram !Fig. 2" is on the order of
1 and all other diagrams are of higher order in 1 /N. In the
leading order, the propagators become

g0!k" =
1

i!k0 + kx + ky
2 ,

D!k" =
1

%
%k0%
%ky%

+ ky
2

. !8"

One can attempt to compute the full quantum effective
action by including 1 /N corrections perturbatively. However,
we will see that this naive 1 /N expansion breaks down in the
low-energy limit. To see this, let us consider a two-loop ver-
tex correction shown in Fig. 4,

&!p,p + q" = − N−3/2& dkdl g0!k"g0!k + q"

'g0!k + l"g0!p + l"D!l"D!l − q" . !9"

Let us focus on the case with p=0. Without loss of general-
ity, we can assume q0 ,qy (0. Integrating over kx, ky, and lx,
one obtains

&!0,q" = − N−3/2& dl0dlydk0
F!l0,ly,k0,q0,qy"

ly)q + i!lyq0
, !10"

where
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is a function which is independent of ! and N, with +!x"
being a step function, and )q=qx+qy

2 is the “distance” of q
from the Fermi surface. If the final momentum of the fer-
mion is also on the Fermi surface, that is, )q=0, the vertex
correction becomes

&!0,q" = −
N−3/2

!q0
1/3 f1!qy/q0

1/3" , !12"

where f1!t" is a nonsingular universal function which is in-
dependent of N and !,

FIG. 3. The one-loop fermion self-energy. Here the boson
propagator is a dressed propagator which include the one-loop self-
energy correction in Fig. 2.
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In the %→0 limit, this two-loop vertex correction which
connects two fermions on the Fermi surface diverges. This
divergence is quite generic: a vertex function which connects
fermions on the Fermi surface diverges as 1 /%n for some
integer n in general. The physical reason for this divergence
is simple. In the %→0 limit, the bare fermion propagator is
independent of frequency and the integration over frequen-
cies is ill defined. This divergence is unphysical in the sense
that it disappears once the frequency-dependent fermion self-
energy correction is included. If one include the one-loop

fermion self-energy !Fig. 3", the dressed fermion propagator
becomes
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and the 1 /% divergence disappears. Instead, the resulting fi-
nite term becomes enhanced by a factor of Nn for some in-
teger n&0 because the zero in the denominator !in the %
→0 limit" is replaced by a term which is proportional to
1 /N. As a result, the two-loop vertex correction shown in
Fig. 4 becomes

'!0,q" = − N−1/2f2!qy/q0
1/3" , !15"

where f2!t" is a nonsingular universal function which is in-
dependent of N and %,
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The additional factor of N is from the enhancement factor
that arises due to the 1 /% divergence when the fermions are
on the Fermi surface. With the inclusion of the fermion self-
energy, the IR divergence in Eq. !12" has been traded with an
enhanced power in N in Eq. !15".

Similar enhancement factors arise in other diagrams as
well. For example, a three-loop fermion self-energy correc-
tion shown in Fig. 5 is on the order of N−2 according to the
naive counting. However, the self-energy of fermion on the
Fermi surface !(p=0" diverges as 1 /% in the %→0 limit if
the bare fermion propagator in Eq. !8" is used. If one in-
cludes the one-loop self-energy of fermion, it becomes on the
order of N−1,

)!p" = − i
c3

N
sgn!p0"$p0$2/3, !17"

when the external fermion is on the Fermi surface. Here c3 is
a universal constant on the order of 1.

This discrepancy between the cases with a finite % and an
infinitesimally small % can be understood is the following
way. With a finite %, there is a crossover around the scale
q0'E%. For q0*E%, the i%k0 is dominant in the fermion

propagator and a Feynman diagram obeys the naive counting
in 1 /N. On the other hand, for q0+E% quantum fluctuations
are controlled by the nonlocal term which is suppressed by
1 /N. The enhanced quantum fluctuations at low energies
lead to an enhancement factor by a positive power in N.
Since we are concerned about the low-energy physics, we
should consider the latter limit. This correct low-energy limit
is automatically taken by considering the %→0 limit with a
fixed energy scale q0. This enhancement in the power of N at
IR is a manifestation of the fact that quantum fluctuations
become stronger at low-energies.

B. Genus expansion

In the low-energy limit, what determines the power of a
Feynman diagram in 1 /N? To answer this question, one
should understand the origin of the enhancement factor dis-
cussed in the previous section more systematically. In the
present section, we will develop a simple geometrical way of
determining power of general Feynman graphs.

First, we illustrate the basic idea using the example !Fig.
4" considered in the previous section. As we have seen in the
previous section, the enhancement factor N is a consequence
of the 1 /% singularity in the %→0 limit. To understand the
origin of the 1 /% singularity, it is useful to examine the way
fermions are scattered near the Fermi surface. Suppose both
p and p+q are on the Fermi surface in Fig. 4. In the fermion
loop with running momentum k, the momentum of the fer-
mion consecutively becomes k , !k+q" , !k+ l" as a result of
scatterings. For a given external momentum q of the boson,
one can always choose the spatial momentum k to make bothFIG. 5. A three-loop fermion self-energy correction.
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behavior at the hot spot is specified in Eq. !3.23". Moving
away from the hot spot, we have the Fermi liquid form in Eq.
!3.24", with the Fermi velocity and quasiparticle residue
given by Eq. !3.25".

In Sec. IV, we describe the structure of the field theory at
higher loop order. Similar to the effects pointed out recently
by Lee15 for the problem of a Fermi surface coupled to a
gauge field, we find that there are infrared singularities
which lead to a breakdown in the naive counting of powers
of 1 /N. However, unlike in the problem of a gauge field
coupled to a single patch of the Fermi surface,15 we find that
the higher-order diagrams cannot be organized into an ex-
pansion in terms of the genus of a surface associated with the
graph. Rather, diagrams that scale as increasingly higher
powers of N are generated upon increasing the number of
loops.

In Sec. V, we consider the onset of pairing near the SDW
transition, a question examined previously by Abanov et
al.12–14 Like them, we find that the corrections to the d-wave
pairing vertex are enhanced relative to the naive counting of
powers of 1 /N. However, we also find an enhancement fac-
tor which scales as the logarithm squared of the energy scale:
this is the result in Eq. !5.6". We will discuss the interpreta-
tion of this log-squared term in Sec. V.

In Sec. VI we show that a similar log-squared enhance-
ment is present for the vertex of a bond order which is lo-
cally an Ising-nematic order; this order parameter is illus-
trated in Figs. 22 and 23. The unexpected similarity between
this order, and the pairing vertex, is a consequence of emer-
gent SU!2" pseudospin symmetries of the continuum theory
of the SDW transition, with independent pseudospin rota-
tions on different pairs of hot spots. One of the pseudospin
rotations is the particle-hole transformation, and the other
pseudospin symmetries will be described more completely in
Sec. II.

II. LOW-ENERGY FIELD THEORY

We will study the generic phase transition between a
Fermi liquid and a SDW state in two spatial dimensions, and
our discussion also easily generalizes to charge density wave
order. The wave vector of the density wave order is Q! , and
we assume that there exist points on the Fermi surface con-
nected by Q! ; these points are known as hot spots. We assume
further that the Fermi velocities at a pair of hot spots con-
nected by Q! are not parallel to each other; this avoids the
case of “nested Fermi surfaces,” which we will not treat here.

A particular realization of the above situation is provided
by the case of SDW ordering on the square lattice at wave
vector Q! = !! ,!". We also take a Fermi surface appropriate
for the cuprates, generated by a tight-binding model with
first and second neighbor hopping. We will restrict all our
subsequent discussion to this case for simplicity.

At wave vector Q! = !! ,!" the SDW ordering is collinear,
and so is described by a three component real field "a, a
=x ,y ,z. There are n=4 pairs of hot spots, as shown in Fig. 1.

We introduce fermion fields !#1$
! ,#2$

! ", !=1, . . . ,n, $
= ↑↓ for each pair of hot spots. Lattice rotations map the

pairs of hot spots into each other, acting cyclically on the
index !. Moreover, the two hot spots within each pair are
related by a reflection across a lattice diagonal. It will be
useful to promote each field # to have N flavors with an eye
to performing a 1 /N expansion. !Note that in Ref. 14, the
total number of hot spots 2nN is denoted as N." The flavor
index is suppressed in all the expressions. The low-energy
effective theory is given by the Lagrangian

L =
N

2c2 !!%"! "2 +
N

2
!""! "2 +

Nr

2
"! 2 +

Nu

4
!"! 2"2

+ #1
†!!!% − iv!1

! · ""#1
! + #2

†!!!% − iv!2
! · ""#2

!

+ &"a!#1$
†!%$$!

a #2$!
! + #2$

†!%$$!
a #1$!

! " !2.1"

The first line in Eq. !2.1" is the usual O!3" model for the
SDW order parameter, the second line is the fermion kinetic
energy, and the third line is the interaction between the SDW
order parameter and the fermions at the hot spots. Here, we
have linearized the fermion dispersion near the hot spots and
v!! are the corresponding Fermi velocities. It is convenient to
choose coordinate axes along directions x̂= 1

#2 !1,1" and ŷ
= 1

#2 !−1,1" so that

v!1
!=1 = !vx,vy", v!2

!=1 = !− vx,vy" . !2.2"

These Fermi velocities are indicated in Fig. 2. The other
Fermi velocities are related by rotations, v!!= !R!/2"!−1v!!=1.
The modifications of the Fermi surfaces in the phase with
SDW order are shown in Fig. 3.

We choose the coefficient & of the fermion-SDW interac-
tion to be of O!1" in N. As a result, the coefficients in the
first line of Eq. !2.1" are all scaled by N as this factor will
automatically appear upon integrating out the high-
momentum/frequency modes of the fermion fields.

Before proceeding with the analysis of the theory !2.1",
let us note its symmetries. Besides the microscopic transla-
tion, point-group, spin-rotation, and time-reversal symme-
tries, the low-energy theory possesses a set of four emergent

FIG. 1. Square lattice Brillouin zone showing the Fermi surface
appropriate to the cuprates. The filled circles are the hot spots con-
nected by the SDW wave vector Q! = !! ,!". The locations of the
continuum fermion fields #1

! and #2
! are indicated.
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2

Model and method of calculations

In this Article, we revisit the issue of quantum
antiferromagnet-normal metal transitions in 2D models
of itinerant electrons from the perspective of a novel gen-
eral theory that shall lead us to the conclusion that the
physics of the transition is considerably richer and more
interesting than it has been thought so far. We demon-
strate that within a slightly modified version of the SF
model of Refs.9,10, the coupling of the bosonic spin mode
to the electronic spins generates at the QCP a pseudogap
in the spectrum that corresponds to an order completely
different from the original spin-density wave (SDW). This
new state may be understood as a superposition of d-
wave superconductivity and an electronic quadrupole-
density wave and its emergence around the QCP consti-
tutes an unexpected outcome of our theory. Interestingly,
our formalism shows a certain analogy with the theory of
Anderson localisation by disorder16. The structure of the
both theories relies on a summation of ladder diagrams
of crossing and non-crossing subtypes, that characterise
the emerging effective collective modes and their inter-
action. In both cases, the low energy physics is finally
captured in terms of a non-linear σ-model. Below, we
present a sketch of the derivation and refer the reader to
the supplementary material for details.
Within the SF model, the physics of electrons inter-

acting via critical bosonic modes is described9,10 by the
Lagrangian L = Lψ + Lφ with

Lψ = ψ∗ [∂τ + ε (−i∇) + λφσ]ψ, (1)

Lφ =
1

2
φD−1φ+

g

2

(
φ2

)2
. (2)

Herein, Lψ is the Lagrangian of fermions that propagate
in the fluctuating field φ representing the bosonic spin
excitations modeled by the Lagrangian Lφ. The elec-
tronic spectrum ε(p) in Lψ is assumed to lead to a Fermi
surface like the one depicted in Fig. 1. The Lagrangian
Lφ is a quantum version of the Landau expansion in the
vicinity of a phase transition.
We define the spin-wave boson mode D−1 entering

Eq. (2) around the QCP through its Fourier transform

D−1 (ω,q) = ω2/v2s + (q−Q)2 + a (3)

where vs is the spin-wave velocity, a is a “mass” charac-
terising the distance to the QCP [At QCP a = 0, while
a > 0 on the metallic side.], and Q is the ordering wave
vector in the SDW phase. Keeping in mind possible ap-
plications of the model to high-Tc cuprates, we choose
Q = (π,π). The points on the Fermi surface connected
by the vector Q are the hot spots in the model and, close
to criticality, the most interesting physics is formed in
their vicinity. Figure 1 illustrates that there are eight
hot spots on the Fermi surface. It is implied that the
coupling constant λ is small in the sense of λ2 # vp0,
where v is the Fermi velocity and p0 the radius of curva-
ture at the hot spots (see Supplementary Information for

FIG. 1: Brillouin zone and Fermi surface for the spin-
fermion model. Electrons at hot spots connected by the
vector Q interact via a critical bosonic mode. The vec-
tors Q1,2 modulate the amplitudes of particle-hole pairings.
Inset: Definition of the angle δ that controls the theoretical
approach.

the details). Also, the quartic φ4-term in Lφ is usually
neglected for a ≥ 0.

Following Refs.9,10,14, we might assume that the
fermionic field ψ had 2N components, where 2 arises due
to spin and N is the number of artificial fermion flavours.
However, in accord with the conclusion of Ref.14, the
large-N limit does not help to justify approximations and
control the theory and, therefore, we shall take here the
physically relevant value N = 1. Instead, we keep the
theory under control assuming that the Fermi surface
has such a shape that the Fermi velocities v1,2 of two
hot spots connected by vector Q are close to being par-
allel to each other,

δ # 1, (4)

with the angle δ defined in the inset of Fig. 1. Even
though the constraint (4) itself is in principle not unre-
alistic, indicating the tendency to a nesting of the type
represented in Fig. 1, we believe that the results of the
present analysis can be applicable for an arbitrary shape
of the Fermi surface at least qualitatively.

The Landau damping modifies8 the form of D−1(ω,q),
Eq. (3), adding to the latter the term γ|ω| with γ =
(2λ)2/(πv2 sin δ) and v = |v1,2|. In the limit (4), the
Landau damping is strong, leading to a “weak coupling”
limit of our theory, and dominates over the ω2-term in
the bare propagator D−1.

In the spirit of the approach of Ref.16, we first integrate
the partition function Z =

∫
exp{−

∫
L}DφDψ over the

field φ neglecting the quartic term in Lφ. As a result, we
obtain a model of electrons with an interaction described
by the function D (ω,q) including the Landau damping
term. Next, we single out those slow pairs that corre-
spond to the mean field order parameters and derive the
mean field equations. The order parameter found from
these equations is strongly degenerate against SU(2) ro-
tations, which gives rise to gapless excitations that finally
are effectively described in terms of a non-linear σ-model.
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FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-
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FIG. 7: Particle-particle and particle-hole non-crossing ladder diagrams.

FIG. 8: Renormalisation of the spin-wave propagator by particle-hole bubbles.

includes as interaction potential the original bare bosonic propagator

D (X −X ′) = T
∑

ω

∫
exp (−iω (τ − τ ′) + iq(r− r′))D (ω,q)

dq

(2π)2
(2.5)

with D−1 (ω,q) = N
(
ω2/v2s + q2 + a

)
. (2.6)

ω = 2πTm, m = 0,±1,±2, . . ., are Matsubara bosonic frequencies. Note that in SI we measure the electron momenta
from the hot spots. As a result, the propagator D (ω,q) in Eq. (2.6) has formally been shifted by the vector Q with
respect to the one in Eq. (3) of the Article.
In principle, one can study the model defined by Eqs. (2.2-2.6) using an expansion in Sint. The bare Green

function G0 for the Hamiltonian H0 used in this type of perturbation theory is written in Fourier space as

G−1
0 (ε,p) = iε− V̂p (2.7)

with ε = π (2n+ 1)T , n = 0,±1,±2, . . ., denoting a fermionic Matsubara frequency.
This approach has been used in the previous publications9,10,14. It has been found in Ref.14 that anomalous (in

terms of the expansion in 1/N) contributions come from particle-particle and particle-hole ladder diagrams of the
type represented in Fig. 7
These diagrams describe superconducting and some kind of insulating fluctuations demonstrating a tendency to a

corresponding particle-particle and particle-hole pairing. Formally, these diagrams resemble “cooperons” and “diffu-
sons” appearing in the localisation theory16. More complicated diagrams correspond to an interaction between these
effective modes.
A very efficient way to sum the contributions of all these diagrams is to derive a non-linear σ-model16 and study

fluctuations of an “order parameter” using this effective field theory.
Below, we follow a similar route. We investigate the model by first writing self-consistent mean field equations, then

solving them, and finally studying fluctuations. Of course, one can describe the fluctuations within a perturbation
scheme again. However, now the expansion will be performed near another minimum. This is a standard situation in
models where a symmetry of the original Hamiltonian is broken in a certain region of parameters.
The first step consists of replacing the Ψ4-interaction by a quadratic term with coefficients to be determined

in a self-consistent way: The effective action for the fermion-fermion interaction shall contain a bosonic propaga-
tor Deff (X −X ′) — physically the spin susceptibility — that is renormalised by particle-hole bubbles, see Fig. 8,
that in turn are composed by renormalised fermions. In order words, we develop a self-consistency scheme for both
fermions and bosons.
The renormalised propagator Deff (ω,q) can be written as

D−1
eff (ω,q) = D−1 (ω,q)−Π (ω,q) , (2.8)
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FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-

2

Model and method of calculations

In this Article, we revisit the issue of quantum
antiferromagnet-normal metal transitions in 2D models
of itinerant electrons from the perspective of a novel gen-
eral theory that shall lead us to the conclusion that the
physics of the transition is considerably richer and more
interesting than it has been thought so far. We demon-
strate that within a slightly modified version of the SF
model of Refs.9,10, the coupling of the bosonic spin mode
to the electronic spins generates at the QCP a pseudogap
in the spectrum that corresponds to an order completely
different from the original spin-density wave (SDW). This
new state may be understood as a superposition of d-
wave superconductivity and an electronic quadrupole-
density wave and its emergence around the QCP consti-
tutes an unexpected outcome of our theory. Interestingly,
our formalism shows a certain analogy with the theory of
Anderson localisation by disorder16. The structure of the
both theories relies on a summation of ladder diagrams
of crossing and non-crossing subtypes, that characterise
the emerging effective collective modes and their inter-
action. In both cases, the low energy physics is finally
captured in terms of a non-linear σ-model. Below, we
present a sketch of the derivation and refer the reader to
the supplementary material for details.
Within the SF model, the physics of electrons inter-

acting via critical bosonic modes is described9,10 by the
Lagrangian L = Lψ + Lφ with

Lψ = ψ∗ [∂τ + ε (−i∇) + λφσ]ψ, (1)

Lφ =
1

2
φD−1φ+

g

2

(
φ2

)2
. (2)

Herein, Lψ is the Lagrangian of fermions that propagate
in the fluctuating field φ representing the bosonic spin
excitations modeled by the Lagrangian Lφ. The elec-
tronic spectrum ε(p) in Lψ is assumed to lead to a Fermi
surface like the one depicted in Fig. 1. The Lagrangian
Lφ is a quantum version of the Landau expansion in the
vicinity of a phase transition.
We define the spin-wave boson mode D−1 entering

Eq. (2) around the QCP through its Fourier transform

D−1 (ω,q) = ω2/v2s + (q−Q)2 + a (3)

where vs is the spin-wave velocity, a is a “mass” charac-
terising the distance to the QCP [At QCP a = 0, while
a > 0 on the metallic side.], and Q is the ordering wave
vector in the SDW phase. Keeping in mind possible ap-
plications of the model to high-Tc cuprates, we choose
Q = (π,π). The points on the Fermi surface connected
by the vector Q are the hot spots in the model and, close
to criticality, the most interesting physics is formed in
their vicinity. Figure 1 illustrates that there are eight
hot spots on the Fermi surface. It is implied that the
coupling constant λ is small in the sense of λ2 # vp0,
where v is the Fermi velocity and p0 the radius of curva-
ture at the hot spots (see Supplementary Information for

FIG. 1: Brillouin zone and Fermi surface for the spin-
fermion model. Electrons at hot spots connected by the
vector Q interact via a critical bosonic mode. The vec-
tors Q1,2 modulate the amplitudes of particle-hole pairings.
Inset: Definition of the angle δ that controls the theoretical
approach.

the details). Also, the quartic φ4-term in Lφ is usually
neglected for a ≥ 0.

Following Refs.9,10,14, we might assume that the
fermionic field ψ had 2N components, where 2 arises due
to spin and N is the number of artificial fermion flavours.
However, in accord with the conclusion of Ref.14, the
large-N limit does not help to justify approximations and
control the theory and, therefore, we shall take here the
physically relevant value N = 1. Instead, we keep the
theory under control assuming that the Fermi surface
has such a shape that the Fermi velocities v1,2 of two
hot spots connected by vector Q are close to being par-
allel to each other,

δ # 1, (4)

with the angle δ defined in the inset of Fig. 1. Even
though the constraint (4) itself is in principle not unre-
alistic, indicating the tendency to a nesting of the type
represented in Fig. 1, we believe that the results of the
present analysis can be applicable for an arbitrary shape
of the Fermi surface at least qualitatively.

The Landau damping modifies8 the form of D−1(ω,q),
Eq. (3), adding to the latter the term γ|ω| with γ =
(2λ)2/(πv2 sin δ) and v = |v1,2|. In the limit (4), the
Landau damping is strong, leading to a “weak coupling”
limit of our theory, and dominates over the ω2-term in
the bare propagator D−1.

In the spirit of the approach of Ref.16, we first integrate
the partition function Z =

∫
exp{−

∫
L}DφDψ over the

field φ neglecting the quartic term in Lφ. As a result, we
obtain a model of electrons with an interaction described
by the function D (ω,q) including the Landau damping
term. Next, we single out those slow pairs that corre-
spond to the mean field order parameters and derive the
mean field equations. The order parameter found from
these equations is strongly degenerate against SU(2) ro-
tations, which gives rise to gapless excitations that finally
are effectively described in terms of a non-linear σ-model.
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The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
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, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,
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b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
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to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-
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includes as interaction potential the original bare bosonic propagator

D (X −X ′) = T
∑
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∫
exp (−iω (τ − τ ′) + iq(r− r′))D (ω,q)
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(2π)2
(2.5)

with D−1 (ω,q) = N
(
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ω = 2πTm, m = 0,±1,±2, . . ., are Matsubara bosonic frequencies. Note that in SI we measure the electron momenta
from the hot spots. As a result, the propagator D (ω,q) in Eq. (2.6) has formally been shifted by the vector Q with
respect to the one in Eq. (3) of the Article.
In principle, one can study the model defined by Eqs. (2.2-2.6) using an expansion in Sint. The bare Green

function G0 for the Hamiltonian H0 used in this type of perturbation theory is written in Fourier space as

G−1
0 (ε,p) = iε− V̂p (2.7)

with ε = π (2n+ 1)T , n = 0,±1,±2, . . ., denoting a fermionic Matsubara frequency.
This approach has been used in the previous publications9,10,14. It has been found in Ref.14 that anomalous (in

terms of the expansion in 1/N) contributions come from particle-particle and particle-hole ladder diagrams of the
type represented in Fig. 7
These diagrams describe superconducting and some kind of insulating fluctuations demonstrating a tendency to a

corresponding particle-particle and particle-hole pairing. Formally, these diagrams resemble “cooperons” and “diffu-
sons” appearing in the localisation theory16. More complicated diagrams correspond to an interaction between these
effective modes.
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models where a symmetry of the original Hamiltonian is broken in a certain region of parameters.
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FIG. 4: Gap as a function of the position on the Fermi
surface. The gap b(0,p) is essentially non-zero only in the
vicinity of hot spots. The order parameter has opposite signs
at the hot spots located on the same pieces of the Fermi sur-
face, which corresponds to a d-wave-like symmetry.

stant λ2. This is in a sharp contrast with the exponen-
tially small values of the gap encountered in conventional
superconductors18. Therefore, one can expect at QCP
much higher values of the gap than those obtained for
non-singular interaction functions used in BCS theory.
Eqs. (6) have been obtained linearising the electron spec-
trum near the Fermi surface and their solution formally
does not depend on the position on the Fermi surface.
In fact, the order parameter O depends not only on the
frequency ε but also on the distance from the hot spots,
decaying at momenta of order γ/v. The length of the arc
of the Fermi surface under the gap, however, should be
calculated taking into account the curvature of the Fermi
surface at the hot spots. As a result, the gap is finite only
in the vicinity of the hot spots, while the “cold regions”
of the Fermi surface remain gapless and their contribu-
tion to physical quantities is typical for the conventional
Fermi liquid. Schematically, b(0,p) on the Fermi surface
is depicted in Fig. 4.
The resulting momentum dependency of b(0,p) on the

position of the Fermi surface can in principle be de-
tectable in STM or ARPES measurements. Actually, as
the function b depends on the Matsubara frequency and
the position on the Fermi surface, it describes a pseudo-
gap rather than a real gap in the spectrum. The corre-
sponding state obtained from the non-trivial solution of
Eqs. (6) can be called pseudogap state.
The matrix u reflects degeneracy of the order parame-

ter and can be parametrised as

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
with |∆+|2 + |∆−|2 = 1 . (7)

The complex numbers ∆+ and ∆− should be interpreted
as order parameters for the superconducting and QDW
order, respectively. In contrast to the conventional su-
perconductivity where electron-electron pairs are formed,
we have here quartets consisting of two particles and two
holes, see Fig. 5. Depending on the relation between the
horizontal and vertical coupling one of the pairings is
more favourable but, if they are equal or one considers
fluctuations, the entire quartet should be dealt with.
The nature of the particle-hole pairing in our theory is

different from those conjectured in SU(2) theories on the
basis of symmetries of t − J models1. The QDW order
found here arises without generating any modulations of

FIG. 5: Quartets formed in the pseudogap state. Pair-
ing types of electrons and holes at opposite hot spots for (a)
quadrupole-density wave (QDW) order and (b) d-wave super-
conductivity.

the local charge density or currents and thus cannot be
directly identified in STM or ARPES measurements. At
the same time, charge density modulations can be in-
duced by adding inhomogeneities into the system.

Fluctuations and phase transition into
superconducting state

The degeneracy with respect to rotations of the ma-
trix u leads to gapless excitations. They destroy the
long-range order and smear the transitions. This phe-
nomenon is well-known in the context of the condensa-
tion of a Higgs boson and of the description of the fluc-
tuations around ground states. Following a similar route
here but taking into account the more complex symme-
tries of the model, we study the contributions of these
excitations to thermodynamics by deriving the proper
non-linear σ-model in a way developed in the localisa-
tion theory16. At T = 0, the model is 2 + 1 dimensional
and the contributions of fluctuations of u as well as of
the fluctuations of the amplitude of the order parameter
are converging and small in the limit (4). As a result,
the mean field equations (6) are applicable. Fluctuations
at finite temperatures are more dangerous because the
effective dimension is reduced to d = 2. The derivation
of the effective free energy functional F [u] that describes
the fluctuations yields

F [u]

T
=

1

t

∫
tr
[
∇u+∇u+ κ2u+τ3uτ3

]
dR . (8)

In Eq. (8), t = c(T )T/λ2 , where c(T ) is a monotonous
function of the order 1 at low temperatures. The latter
vanishes at the mean field transition temperature T0 ∼ Γ
of the pseudogap state. Further, κ ∼ γ2v/m with m be-
ing the electron mass, and R = {x/ sin(δ/2), y/ cos(δ/2)}
where x and y are the original coordinates directed along
the diagonals of the Brillouin zone in Fig. 1. Note that
the coupling constant t does not contain sin δ and is small
for all temperatures that are below but not too close
to T0. The matrix τ3 stands for the Pauli matrix in the
space of the matrix u, Eq. (7). Its presence in the σ-
model breaks the symmetry between the superconducting
and QDW states. As a result, a superconducting order
with a large gap ∼ Γ is more favourable at the minimum
of F [u].

3

FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-

 Pseudo-Gap equations around the QCP are universal
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FIG. 4: Gap as a function of the position on the Fermi
surface. The gap b(0,p) is essentially non-zero only in the
vicinity of hot spots. The order parameter has opposite signs
at the hot spots located on the same pieces of the Fermi sur-
face, which corresponds to a d-wave-like symmetry.

stant λ2. This is in a sharp contrast with the exponen-
tially small values of the gap encountered in conventional
superconductors18. Therefore, one can expect at QCP
much higher values of the gap than those obtained for
non-singular interaction functions used in BCS theory.
Eqs. (6) have been obtained linearising the electron spec-
trum near the Fermi surface and their solution formally
does not depend on the position on the Fermi surface.
In fact, the order parameter O depends not only on the
frequency ε but also on the distance from the hot spots,
decaying at momenta of order γ/v. The length of the arc
of the Fermi surface under the gap, however, should be
calculated taking into account the curvature of the Fermi
surface at the hot spots. As a result, the gap is finite only
in the vicinity of the hot spots, while the “cold regions”
of the Fermi surface remain gapless and their contribu-
tion to physical quantities is typical for the conventional
Fermi liquid. Schematically, b(0,p) on the Fermi surface
is depicted in Fig. 4.
The resulting momentum dependency of b(0,p) on the

position of the Fermi surface can in principle be de-
tectable in STM or ARPES measurements. Actually, as
the function b depends on the Matsubara frequency and
the position on the Fermi surface, it describes a pseudo-
gap rather than a real gap in the spectrum. The corre-
sponding state obtained from the non-trivial solution of
Eqs. (6) can be called pseudogap state.
The matrix u reflects degeneracy of the order parame-

ter and can be parametrised as

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
with |∆+|2 + |∆−|2 = 1 . (7)

The complex numbers ∆+ and ∆− should be interpreted
as order parameters for the superconducting and QDW
order, respectively. In contrast to the conventional su-
perconductivity where electron-electron pairs are formed,
we have here quartets consisting of two particles and two
holes, see Fig. 5. Depending on the relation between the
horizontal and vertical coupling one of the pairings is
more favourable but, if they are equal or one considers
fluctuations, the entire quartet should be dealt with.
The nature of the particle-hole pairing in our theory is

different from those conjectured in SU(2) theories on the
basis of symmetries of t − J models1. The QDW order
found here arises without generating any modulations of

FIG. 5: Quartets formed in the pseudogap state. Pair-
ing types of electrons and holes at opposite hot spots for (a)
quadrupole-density wave (QDW) order and (b) d-wave super-
conductivity.

the local charge density or currents and thus cannot be
directly identified in STM or ARPES measurements. At
the same time, charge density modulations can be in-
duced by adding inhomogeneities into the system.

Fluctuations and phase transition into
superconducting state

The degeneracy with respect to rotations of the ma-
trix u leads to gapless excitations. They destroy the
long-range order and smear the transitions. This phe-
nomenon is well-known in the context of the condensa-
tion of a Higgs boson and of the description of the fluc-
tuations around ground states. Following a similar route
here but taking into account the more complex symme-
tries of the model, we study the contributions of these
excitations to thermodynamics by deriving the proper
non-linear σ-model in a way developed in the localisa-
tion theory16. At T = 0, the model is 2 + 1 dimensional
and the contributions of fluctuations of u as well as of
the fluctuations of the amplitude of the order parameter
are converging and small in the limit (4). As a result,
the mean field equations (6) are applicable. Fluctuations
at finite temperatures are more dangerous because the
effective dimension is reduced to d = 2. The derivation
of the effective free energy functional F [u] that describes
the fluctuations yields

F [u]

T
=

1

t

∫
tr
[
∇u+∇u+ κ2u+τ3uτ3

]
dR . (8)

In Eq. (8), t = c(T )T/λ2 , where c(T ) is a monotonous
function of the order 1 at low temperatures. The latter
vanishes at the mean field transition temperature T0 ∼ Γ
of the pseudogap state. Further, κ ∼ γ2v/m with m be-
ing the electron mass, and R = {x/ sin(δ/2), y/ cos(δ/2)}
where x and y are the original coordinates directed along
the diagonals of the Brillouin zone in Fig. 1. Note that
the coupling constant t does not contain sin δ and is small
for all temperatures that are below but not too close
to T0. The matrix τ3 stands for the Pauli matrix in the
space of the matrix u, Eq. (7). Its presence in the σ-
model breaks the symmetry between the superconducting
and QDW states. As a result, a superconducting order
with a large gap ∼ Γ is more favourable at the minimum
of F [u].
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FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′
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,
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∑
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(
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)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-
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FIG. 10: (a) The dimensionless quantities b̄ and f̄ as functions of the reduced frequency ε̄ at temperature T̄ = 0.001 at the QCP
(a = 0). Under the peak of the gap function b̄, the dynamic term in the fermionic propagator is linear, while the interaction
with the Landau-damped bosons leads to the characteristic square root law only at larger frequencies ε̄ ∼ 1. Inset: The same
but far away from the criticality (ā = 1). The gap b̄ is considerably suppressed and the Landau damping is ineffective, resulting
in the linear frequency dependence as in the case of free fermions. (b) The dynamic term Ω̄ of the boson propagator. At zero
bosonic mass, the fermionic gap b suppresses the Landau damping and Ω ∝ ω2, while at a large mass ā = 1 the fermion gap b̄
is small and the |ω|-law is restored.

where α (x) is a function of x, with a finite α (0) and

α (x) ∝ x2−η, x → ∞

Substituting Eq. (2.55) into Eqs. (2.46-2.48) we can see that the logarithmic divergence of the solution b (ε) is
cut because the integral over ε′ converges. As the exponent η is numerically small, the solution and all subsequent
quantities are very close to those obtained for η = 0 when the quartic term in the Lagrangian Lφ, Eq. (1.3), was
neglected.
As concerns the triplet order parameter $S, Eq. (2.24), we seek a solution $S in the form

$S (ε) = $e (ε)

(
0 z
z+ 0

)
, (2.56)

where ēi (ε) = ei (−ε), z+z = 1, and z̄ = z+. This leads us to an equation for ei, i = 1, 2, 3,

$e (ε) = λ2
∑

ε′

∫
D̂eff (ε− ε′,p− p′;$e)$e (ε′)

ε2 + (vp′)2 + $e2 (ε′)

dp′

(2π)2
. (2.57)

In Eq. (2.57) the propagator D̂eff is a 3× 3 matrix. This equation differs from Eq. (2.37) by the absence of the factor
3 in front of λ2, which implies that the triplet solution is energetically less favorable. Therefore, we do not consider
the triplet pairing anymore.
In conclusion, the mean field treatment of the interaction between fermions and critical spin modes leads to a

spontaneous breaking of the symmetry and formation of a gap. The emerging order is a mixture of a singlet d-
wave like superconductivity and a particle-hole insulating order. Of course, we cannot fully trust mean field theories
unless we have demonstrated that the mean field state corresponds to a the minimum and we have estimated the
contributions coming from fluctuations. We will do this in the next Section, while in the remaining of this one we
discuss the symmetries and properties of the new state.

C. Symmetry of the order parameter

The off-diagonal part Qoff (in Λ-space) of the matrix Q, Eqs. (2.29, 2.32), is the matrix order parameter containing
the superconducting (∆+) and an insulating particle-hole pairing (∆−), cf. Eq. (2.34). This order arises as a result
of the pairing of particles and/or holes from hot spots that are located opposite to each other on the Fermi surface.
At the same time, the presence of Σ3 in Qoff means that the order parameter changes sign when passing from a hot
spot to its partner connected by the vector Q, see Fig. 1. Such an oscillation of the sign corresponds to a d-wave-
like structure of the wave functions. Recalling that the order parameter Q originates from the spin singlet pairing,
we thus conclude that the superconducting part of the order parameter describes d-wave superconductivity. A full
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bosonic mass, the fermionic gap b suppresses the Landau damping and Ω ∝ ω2, while at a large mass ā = 1 the fermion gap b̄
is small and the |ω|-law is restored.

where α (x) is a function of x, with a finite α (0) and

α (x) ∝ x2−η, x → ∞

Substituting Eq. (2.55) into Eqs. (2.46-2.48) we can see that the logarithmic divergence of the solution b (ε) is
cut because the integral over ε′ converges. As the exponent η is numerically small, the solution and all subsequent
quantities are very close to those obtained for η = 0 when the quartic term in the Lagrangian Lφ, Eq. (1.3), was
neglected.
As concerns the triplet order parameter $S, Eq. (2.24), we seek a solution $S in the form
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∑

ε′

∫
D̂eff (ε− ε′,p− p′;$e)$e (ε′)

ε2 + (vp′)2 + $e2 (ε′)

dp′

(2π)2
. (2.57)

In Eq. (2.57) the propagator D̂eff is a 3× 3 matrix. This equation differs from Eq. (2.37) by the absence of the factor
3 in front of λ2, which implies that the triplet solution is energetically less favorable. Therefore, we do not consider
the triplet pairing anymore.
In conclusion, the mean field treatment of the interaction between fermions and critical spin modes leads to a

spontaneous breaking of the symmetry and formation of a gap. The emerging order is a mixture of a singlet d-
wave like superconductivity and a particle-hole insulating order. Of course, we cannot fully trust mean field theories
unless we have demonstrated that the mean field state corresponds to a the minimum and we have estimated the
contributions coming from fluctuations. We will do this in the next Section, while in the remaining of this one we
discuss the symmetries and properties of the new state.

C. Symmetry of the order parameter

The off-diagonal part Qoff (in Λ-space) of the matrix Q, Eqs. (2.29, 2.32), is the matrix order parameter containing
the superconducting (∆+) and an insulating particle-hole pairing (∆−), cf. Eq. (2.34). This order arises as a result
of the pairing of particles and/or holes from hot spots that are located opposite to each other on the Fermi surface.
At the same time, the presence of Σ3 in Qoff means that the order parameter changes sign when passing from a hot
spot to its partner connected by the vector Q, see Fig. 1. Such an oscillation of the sign corresponds to a d-wave-
like structure of the wave functions. Recalling that the order parameter Q originates from the spin singlet pairing,
we thus conclude that the superconducting part of the order parameter describes d-wave superconductivity. A full
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FIG. 4: Gap as a function of the position on the Fermi
surface. The gap b(0,p) is essentially non-zero only in the
vicinity of hot spots. The order parameter has opposite signs
at the hot spots located on the same pieces of the Fermi sur-
face, which corresponds to a d-wave-like symmetry.

stant λ2. This is in a sharp contrast with the exponen-
tially small values of the gap encountered in conventional
superconductors18. Therefore, one can expect at QCP
much higher values of the gap than those obtained for
non-singular interaction functions used in BCS theory.
Eqs. (6) have been obtained linearising the electron spec-
trum near the Fermi surface and their solution formally
does not depend on the position on the Fermi surface.
In fact, the order parameter O depends not only on the
frequency ε but also on the distance from the hot spots,
decaying at momenta of order γ/v. The length of the arc
of the Fermi surface under the gap, however, should be
calculated taking into account the curvature of the Fermi
surface at the hot spots. As a result, the gap is finite only
in the vicinity of the hot spots, while the “cold regions”
of the Fermi surface remain gapless and their contribu-
tion to physical quantities is typical for the conventional
Fermi liquid. Schematically, b(0,p) on the Fermi surface
is depicted in Fig. 4.
The resulting momentum dependency of b(0,p) on the

position of the Fermi surface can in principle be de-
tectable in STM or ARPES measurements. Actually, as
the function b depends on the Matsubara frequency and
the position on the Fermi surface, it describes a pseudo-
gap rather than a real gap in the spectrum. The corre-
sponding state obtained from the non-trivial solution of
Eqs. (6) can be called pseudogap state.
The matrix u reflects degeneracy of the order parame-

ter and can be parametrised as

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
with |∆+|2 + |∆−|2 = 1 . (7)

The complex numbers ∆+ and ∆− should be interpreted
as order parameters for the superconducting and QDW
order, respectively. In contrast to the conventional su-
perconductivity where electron-electron pairs are formed,
we have here quartets consisting of two particles and two
holes, see Fig. 5. Depending on the relation between the
horizontal and vertical coupling one of the pairings is
more favourable but, if they are equal or one considers
fluctuations, the entire quartet should be dealt with.
The nature of the particle-hole pairing in our theory is

different from those conjectured in SU(2) theories on the
basis of symmetries of t − J models1. The QDW order
found here arises without generating any modulations of

FIG. 5: Quartets formed in the pseudogap state. Pair-
ing types of electrons and holes at opposite hot spots for (a)
quadrupole-density wave (QDW) order and (b) d-wave super-
conductivity.

the local charge density or currents and thus cannot be
directly identified in STM or ARPES measurements. At
the same time, charge density modulations can be in-
duced by adding inhomogeneities into the system.

Fluctuations and phase transition into
superconducting state

The degeneracy with respect to rotations of the ma-
trix u leads to gapless excitations. They destroy the
long-range order and smear the transitions. This phe-
nomenon is well-known in the context of the condensa-
tion of a Higgs boson and of the description of the fluc-
tuations around ground states. Following a similar route
here but taking into account the more complex symme-
tries of the model, we study the contributions of these
excitations to thermodynamics by deriving the proper
non-linear σ-model in a way developed in the localisa-
tion theory16. At T = 0, the model is 2 + 1 dimensional
and the contributions of fluctuations of u as well as of
the fluctuations of the amplitude of the order parameter
are converging and small in the limit (4). As a result,
the mean field equations (6) are applicable. Fluctuations
at finite temperatures are more dangerous because the
effective dimension is reduced to d = 2. The derivation
of the effective free energy functional F [u] that describes
the fluctuations yields

F [u]

T
=

1

t

∫
tr
[
∇u+∇u+ κ2u+τ3uτ3

]
dR . (8)

In Eq. (8), t = c(T )T/λ2 , where c(T ) is a monotonous
function of the order 1 at low temperatures. The latter
vanishes at the mean field transition temperature T0 ∼ Γ
of the pseudogap state. Further, κ ∼ γ2v/m with m be-
ing the electron mass, and R = {x/ sin(δ/2), y/ cos(δ/2)}
where x and y are the original coordinates directed along
the diagonals of the Brillouin zone in Fig. 1. Note that
the coupling constant t does not contain sin δ and is small
for all temperatures that are below but not too close
to T0. The matrix τ3 stands for the Pauli matrix in the
space of the matrix u, Eq. (7). Its presence in the σ-
model breaks the symmetry between the superconducting
and QDW states. As a result, a superconducting order
with a large gap ∼ Γ is more favourable at the minimum
of F [u].

3

FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-
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It is well known that fluctuations in two-dimensional
non-linear σ-model at finite t and κ = 0 produce log-
arithmically divergent contributions destroying the long
range order. This means that in our case they destroy
both the superconducting and QDW orders. A finite κ
serves as the infrared cutoff in the logarithms, so that
the superconducting order can be stabilised below a crit-
ical temperature Tc. The RG method is a standard tool
for studying properties of the σ-model19. Integrating out
step-by-step all momenta exceeding κ in the first loop
approximation we come to the following expressions for
the effective coupling constants t(κ0) and κ(κ0)

t (κ) = t0

(
1− 3t0

16π
ln

Γ

vκ

)−1

, (9)

κ2 (κ0) = κ20

(
1− 3t0

16π
ln

Γ

vκ

)
, (10)

where t0 and κ0 are the bare values written below Eq. (8)
and Γ plays the role of the upper energy cutoff in the σ-
model.
Formally, Eq. (9) is applicable as long as t(κ) " 1

where superconductivity is stabilised. Upon increasing
the temperature, the bare coupling t and, hence, t(κ)
grow, while κ20 decays. These tendencies imply that fluc-
tuations of the order parameter u become strong but, at
the same time, the anisotropy between the superconduct-
ing and QDW vanishes. This should lead for t(κ) ∼ 1 to
a phase transition into a “disordered” (pseudogap) phase
where no long-range order exists anymore but the pseu-
dogap b(ε) is still finite and remains large up to consid-
erably high temperatures. The pseudogap state should
exhibit combined properties of d-wave superconductiv-
ity and QDW although sharp dependencies are neces-
sarily smeared by thermal fluctuations. An estimate for
the transition temperature Tc between the superconduct-
ing and pseudogap phase is provided by the equation
t(κ) = 1. It is a question of future studies how various
features of the pseudogap state can be probed experi-
mentally, whereas the pseudogap itself can certainly be
seen using STM and ARPES techniques. It is also evi-
dent that there remain strong superconducting fluctua-
tions above Tc. Note that in contrast to the BCS theory
of superconductivity, Tc is related to the value of the gap
Γ in quite a nontrivial way.

Phase diagram

We summarise our findings with the help of the phase
diagram in Fig. 6. The red dashed line denotes the
antiferromagnet-normal metal phase transition in the ab-
sence of interaction between the spin-wave modes and
electron spins. It is the region to its right that we have
studied in the present Article. We identify the pseudogap
region and represent the crossover to the normal metal
state by the blue line. The green superconducting re-
gion is a part of a more broad pseudogap region. Moving

FIG. 6: Phase diagram for the spin-fermion model. In
this picture, AF denotes the antiferromagnetic (SDW) state,
SC is the phase of the d-wave superconductivity, and PG the
pseudogap state. The dashed line represents the solution of
the equation a(T ) = 0. The question mark “?” indicates that
the present consideration is not sufficient to identify the phase
in the region between AF and SC.

to the right (increasing the bosonic mass a in Eq. (3))
makes the spin-fermion interaction less singular and ef-
fects of curvature of the Fermi surface more pronounced.
As a result, QDW pairing is suppressed but one still ob-
tains the d-wave superconductivity, although with a lower
transition temperature. At large a, the pseudogap and
superconducting states merge.

Although our results cannot be used to the left of the
dashed line (a < 0), by assumption, the antiferromag-
netic region exists within the SF model, Eqs. (1,2), for
not very small |a|. At the same time, the pseudogap re-
mains finite for a while after crossing the dashed line,
because it would cost a large energy for it to vanish.
Therefore, there must be a region of a < 0 in which the
pseudogap is still finite and this region extends to the
left until the phase transition (crossover) to the antifer-
romagnetic state sets in. At low temperatures, there is
the possibility for an interesting scenario that, when go-
ing to the left, the coefficient κ2, Eq. (8), changes its
sign. This would correspond to a transition from the
superconductivity to QDW followed by a transition into
the antiferromagnetic state. At the same time, we cannot
exclude a direct transition from the superconductivity to
the antiferromagnet and the situation will only be clari-
fied by an explicit study of this region. We have marked
this region by the question mark in Fig. 6.

Remarkably, the phase diagram represented in Fig. 6
looks similar to that of the cuprates (see, e.g. Refs.20,21).
The large values of the pseudogap can clearly be under-
stood from the linear dependence of the pseudogap on
the effective electron-electron interaction obtained in the
present work. Of course, in order to make a definite con-
clusion one should perform a detailed comparison of the
theoretical prediction made on the basis of the SF model
and experimental data. However, our results are already
consistent with important experimental evidence. For in-
stance, the d-wave like shape of the pseudogap has been

4

FIG. 4: Gap as a function of the position on the Fermi
surface. The gap b(0,p) is essentially non-zero only in the
vicinity of hot spots. The order parameter has opposite signs
at the hot spots located on the same pieces of the Fermi sur-
face, which corresponds to a d-wave-like symmetry.

stant λ2. This is in a sharp contrast with the exponen-
tially small values of the gap encountered in conventional
superconductors18. Therefore, one can expect at QCP
much higher values of the gap than those obtained for
non-singular interaction functions used in BCS theory.
Eqs. (6) have been obtained linearising the electron spec-
trum near the Fermi surface and their solution formally
does not depend on the position on the Fermi surface.
In fact, the order parameter O depends not only on the
frequency ε but also on the distance from the hot spots,
decaying at momenta of order γ/v. The length of the arc
of the Fermi surface under the gap, however, should be
calculated taking into account the curvature of the Fermi
surface at the hot spots. As a result, the gap is finite only
in the vicinity of the hot spots, while the “cold regions”
of the Fermi surface remain gapless and their contribu-
tion to physical quantities is typical for the conventional
Fermi liquid. Schematically, b(0,p) on the Fermi surface
is depicted in Fig. 4.
The resulting momentum dependency of b(0,p) on the

position of the Fermi surface can in principle be de-
tectable in STM or ARPES measurements. Actually, as
the function b depends on the Matsubara frequency and
the position on the Fermi surface, it describes a pseudo-
gap rather than a real gap in the spectrum. The corre-
sponding state obtained from the non-trivial solution of
Eqs. (6) can be called pseudogap state.
The matrix u reflects degeneracy of the order parame-

ter and can be parametrised as

u =

(
∆− ∆+

−∆∗
+ ∆∗

−

)
with |∆+|2 + |∆−|2 = 1 . (7)

The complex numbers ∆+ and ∆− should be interpreted
as order parameters for the superconducting and QDW
order, respectively. In contrast to the conventional su-
perconductivity where electron-electron pairs are formed,
we have here quartets consisting of two particles and two
holes, see Fig. 5. Depending on the relation between the
horizontal and vertical coupling one of the pairings is
more favourable but, if they are equal or one considers
fluctuations, the entire quartet should be dealt with.
The nature of the particle-hole pairing in our theory is

different from those conjectured in SU(2) theories on the
basis of symmetries of t − J models1. The QDW order
found here arises without generating any modulations of

FIG. 5: Quartets formed in the pseudogap state. Pair-
ing types of electrons and holes at opposite hot spots for (a)
quadrupole-density wave (QDW) order and (b) d-wave super-
conductivity.

the local charge density or currents and thus cannot be
directly identified in STM or ARPES measurements. At
the same time, charge density modulations can be in-
duced by adding inhomogeneities into the system.

Fluctuations and phase transition into
superconducting state

The degeneracy with respect to rotations of the ma-
trix u leads to gapless excitations. They destroy the
long-range order and smear the transitions. This phe-
nomenon is well-known in the context of the condensa-
tion of a Higgs boson and of the description of the fluc-
tuations around ground states. Following a similar route
here but taking into account the more complex symme-
tries of the model, we study the contributions of these
excitations to thermodynamics by deriving the proper
non-linear σ-model in a way developed in the localisa-
tion theory16. At T = 0, the model is 2 + 1 dimensional
and the contributions of fluctuations of u as well as of
the fluctuations of the amplitude of the order parameter
are converging and small in the limit (4). As a result,
the mean field equations (6) are applicable. Fluctuations
at finite temperatures are more dangerous because the
effective dimension is reduced to d = 2. The derivation
of the effective free energy functional F [u] that describes
the fluctuations yields

F [u]

T
=

1

t

∫
tr
[
∇u+∇u+ κ2u+τ3uτ3

]
dR . (8)

In Eq. (8), t = c(T )T/λ2 , where c(T ) is a monotonous
function of the order 1 at low temperatures. The latter
vanishes at the mean field transition temperature T0 ∼ Γ
of the pseudogap state. Further, κ ∼ γ2v/m with m be-
ing the electron mass, and R = {x/ sin(δ/2), y/ cos(δ/2)}
where x and y are the original coordinates directed along
the diagonals of the Brillouin zone in Fig. 1. Note that
the coupling constant t does not contain sin δ and is small
for all temperatures that are below but not too close
to T0. The matrix τ3 stands for the Pauli matrix in the
space of the matrix u, Eq. (7). Its presence in the σ-
model breaks the symmetry between the superconducting
and QDW states. As a result, a superconducting order
with a large gap ∼ Γ is more favourable at the minimum
of F [u].

3

FIG. 2: Chequerboard structure. The quadrupole density
amplitude (normalised to values between ±1) is represented
in real space. It is incommensurate with the square atomic
lattice of the compound.

The properties of the latter are studied using the renor-
malisation group (RG) technique.

Mean field equations and pseudogap state

The mean field approximation leads to a superposition
of particle-particle and particle-hole pairings,

cppp

〈
(iσ2)αβ ψα,pψβ,−p

〉
+ cphp

〈
δαβψα,pψ

∗
β,−p

〉
, (5)

with the momentum p located at hot spots opposite
to each other on the Fermi surface. In Eq. (5), σ2 is
the Pauli matrix for the electron spin and cppp (cph2p) the
amplitude of the particle-particle (particle-hole) pairing.
The pairings of the type in Eq.(5) are purely singlet and
thus do not lead to any spin order. The signs of coef-

ficients cpp/php at neighbouring hot spots on each con-
nected piece of the Fermi surface are opposite, indicating
a d-wave-like structure of the gap in the electron spec-
trum. Therefore, neither local charge nor current den-
sity modulations arise. However, as a consequence of
the electron-hole pairing, the rotational symmetry of the
electron gas is broken and a state with a finite coordinate-
dependent quadrupole density is formed. The electronic
quadrupole density, which is proportional to the pair-
ing amplitude, oscillates with the vectors Q1 and Q2,
see Fig. 1, connecting two hot spots at ±p. These vec-
tors Q1,2 are considerably smaller than the SDW order-
ing wave vector Q and a chequerboard structure as de-
picted in Fig. 2 forms (c.f. Ref.14). We dub this new
structure quadrupole-density wave (QDW). At the QCP
the parameter a vanishes, a = 0, and the propagator
D (ω,q), Eq. (3), diverges at q → Q and ω → 0. The
latter ultimately allows in 2D for the electron-hole pairing
in the case of a generic Fermi surface without a nesting.
This pairing survives also for finite but small a.
The general solution O of the mean field equations for

FIG. 3: Gap function. The mean field solution b(ε, T ) as
a function of the Matsubara frequency ε and temperature T .
All energies are measured in units of Γ.

the order parameter at a given hot spot may be repre-
sented in the form O(ε) = b(ε)u with u being an arbitrary
SU(2) unitary matrix, u+u = 1, detu = 1, and b(ε) a real
positive function of the fermionic Matsubara frequency ε.
After a rescaling ε → ε̄Γ, b → b̄Γ, and T → T̄Γ, where
Γ = (3λ/8)2 π sin δ, one obtains at criticality (a = 0)
a set of remarkably universal self-consistency equations
independent of the parameters of the model,

b̄ (ε̄) = T̄
∑

ε̄′

cosΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

f̄ (ε̄) = ε̄+ T̄
∑

ε̄′

sinΘ (ε̄′)√
Ω̄ (ε̄− ε̄′)

,

Ω̄ (ω̄) = 2πT̄
∑

ε̄

sin2
(
Θ (ε̄+ ω̄)−Θ (ε̄)

2

)
, (6)

where sinΘ(ε̄) = f̄(ε̄)
[
b̄2(ε̄) + f̄2(ε̄)

]−1/2
. The functions

b̄(ε̄) and f̄(ε̄) are by construction even, b̄(ε̄) = b̄(−ε̄), and
odd, f̄(ε̄) = −f̄(−ε̄), respectively and ω̄ is a rescaled
bosonic Matsubara frequency. Note that the function
f(ε) replaces the frequency term ε in the bare fermion
propagator.

A quick glance at Eqs. (6) reveals the trivial solu-
tion b̄(ε̄) = 0, leading to Ω̄(ω̄) = |ω̄| and f̄(ε̄) =
sign(ε̄)(|ε̄| + 2

π

√
|ε̄|). This solution is well known as it

corresponds to the one-loop self-energy corrections9,10,17

to the bosonic and fermionic propagators. Here, of a
greater interest is the existence of a nontrivial so far
unanticipated energy-dependent solution b̄(ε̄). It can be
computed numerically and its dependence on ε̄ and T̄ is
shown in Fig. 3. We have checked that the free energy
corresponding to the nontrivial solution is lower than the
one in the case of the trivial scenario with b̄(ε̄) = 0. One
should keep in mind, though, that the dependence of the
gap on real frequencies does not immediately follow from
the solution b(ε) but should be found from an analytical
continuation.

The characteristic value of b(ε) is of order Γ, im-
plying that it scales linearly with the interaction con-
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FIG. 2: Diagrammatic building blocks of our low energy field
theory: (a) the propagator gn(K), Eq. (2.53), and (b) the
interaction vertices S4, S3, and S2 from Eqs. (2.54), (2.56),
and (2.57).

mensions. It is a field theory for the anticommuting su-
perfield Ψ which describes the bosonic excitations. The
interaction between these excitations appears as sum of
the quadratic term S2, the cubic term S3 and the quar-
tic term S4. The bare coupling constants are written
in Eq. (2.55). In principle, one can immediately start
perturbative studies of the model using the contraction
rule, Eq. (2.52), and Wick’s theorem. A possible dia-
grammatic representation is shown in Fig. 2. Although
the effective field theory may look somewhat complex, it
allows to conveniently treat the low energy limit, identi-
fying the interesting logarithms and summing them. This
is what the next sections are devoted to.

III. PERTURBATION THEORY

The bosonized model, Eqs. (2.49)-(2.57), is not trivial
and the perturbation theory in the coupling constants
γs
n̂ñ

, γc
n̂ñ

, Eq. (2.55), yields logarithmic contributions di-
verging in the limit T → 0. In this section, we iden-
tify the relevant classes of logarithmic one-loop diagrams.
Later in Sec. IV, these logarithmic contributions will be
summed up to infinite order by means of a one-loop renor-
malization group scheme.
In one dimension, such a procedure would essentially

repeat the steps from Ref. 15. The peculiarity of higher
dimensions, d > 1, appears in form of the “rotations”
n + q⊥/2pF of the angular arguments in the interact-
ing superfields, cf. Eqs. (2.54)-(2.57). Consequently, the
running momentum Q in a one-loop diagram affects at
the same time the (actual) momentum K and the di-
rection n of the propagators. As a result, we will find
that logarithms which certain classes of diagrams feature
in d = 1 dimension are suppressed in dimensions d > 1
because of transverse fluctuations q⊥ along the Fermi
surface. Eventually, the effects of the finite Fermi sur-
face curvature lead to renormalization group equations

FIG. 3: Backscattering diagrams for the thermodynamic po-
tential Ω: Diagram (a) is the second order diagram containing
the leading backscattering contribution for n ∼ −ñ while di-
agram (b) represents an exemplary logarithmic renormaliza-
tion to diagram (a), cf. Sec. IIIC. Finally, diagram (c) gives
for n1 ∼ −n2 ∼ −n3 ∼ n4 a backscattering contribution
of higher order in the interaction and also includes a renor-
malizing building block S4. For weakly interacting fermions,
diagram (c) can be neglected.

different from the ones obtained15 in one dimension.
Before studying the one-loop vertex corrections, we be-

gin the perturbative analysis of this section as we dis-
cuss the relevant diagrams for the thermodynamic po-
tential. These diagrams describe physical backscattering
processes.
While the boson model, Eqs. (2.49)-(2.57), has been

derived for an arbitrary dimension d, we consider from
now on the most interesting case of a two-dimensional
Fermi liquid, d = 2.

A. Backscattering diagrams

In the second order in the interaction, only diagram
Fig. 3(a) describes a contribution to the thermodynamic
potential Ω relevant for studying the backscattering ef-
fects. All other second order diagrams cannot contain
two boson propagators gn(K) and gñ(K ′) with n ∼ −ñ.
Figure 3(b) shows an exemplary diagram that renormal-
izes the bare diagram Fig. 3(a) while Fig. 3(c) represents
a backscattering contribution of higher order in the in-
teraction. Considering the limit of weak interaction, we
are safe to neglect such higher order diagrams because
they do only describe high energy renormalizations of
the coupling constants.
Working with the effective low energy theory, we have

to be sure that the main contribution to the physical
quantities of interest indeed comes from the low energies
not exceeding T . Whether this is the case or not should
be checked for each quantity under investigation. In fact,
the low energy contributions are not most important for
a perturbative correction ∆Ω (T ) to the thermodynamic
potential and, thus, we cannot compute∆Ω (T ) using the
low energy limit only. However, the main contribution to

* K.B. Efetov, C. Pepin, H. Meier,
Exact bosonization for an interacting Fermi gas in arbitrary dimensions
Phys. Rev. Lett. 103,186403 (2009); PRB 82,235120 (2010), preprint 2011
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form

δc(3) =
3ζ(3)

2πv2F

{
(u0+uπ)〈(uϑ+uπ−ϑ)

2〉

+ 3(u0−uπ)〈(uϑ−uπ−ϑ)
2〉
}
T 2 ln(Λ/T ) (5.6)

Here, ϑ is the scattering angle, uϑ = νṼ (2pF sin(ϑ/2)),
and 〈gϑ〉 is the angular average for an arbitrary function
gϑ. Following the decoupling into soft modes, Eq. (2.7),
angular averages 〈gϑ〉 are to be replaced by (g0 + gπ)/2
in our model. Applying this correspondence to Eq. (5.6),
we recover immediately the same logarithmic dependence
of the specific heat δc(3) at third order as in Eq. (5.5).
Thus, on one hand Eq. (5.5) serves as a good check of

our low energy model, on the other hand we confirm the
estimate ν∗ ∼ ν/2 discussed after Eq. (3.16).
In the remaining of this analysis, we extend the per-

turbative result Eq. (5.5) by including the leading in γI/IIπ

terms of all orders in the logarithm ln(Λ/T ). This cal-
culation shall complete the picture of the non-analytic
corrections to the specific heat at low temperatures T .

B. Full low temperature result

In this section, we will extract from Eq. (5.1) the
anomalous contribution to the specific heat in all orders
in ln(Λ/T ). As a result, we obtain the full picture of the
non-analyticities in the Fermi liquid thermodynamics at
low temperatures T .
In order to accomplish this task, we should choose a

model for the cutoff function f(q̄⊥), which controls the
two soft modes represented by Fig. 1(a) and (b). Follow-
ing Ref. 15, a suitable candidate is a Lorentzian of the
form

f(q̄⊥) =
1

1 + |q̄⊥|2/q20
. (5.7)

This choice implies f(0) = 1 so that the result from sec-
ond order perturbation theory, Eq. (3.6), remains the
same. We recall that within the low energy theory, it is
implied that q0 % pF . Fourier transforming Eq. (5.7)
yields

f(r⊥) =
π

2
e−|r⊥| (5.8)

according to the definition of the Fourier transform in
Eq. (3.18).
Inserting the model function f(r⊥), Eq. (5.8), into

the renormalized quadratic vertices, Eqs. (4.21)-(4.23),
we are in a position to Fourier transform them to the
momentum representation, which is needed for formula
Eq. (5.1). Since only the leading quadratic in q̄⊥ term

of the expression [∆I/II
⊥ ]2−∆I/II

0 ∆I/II
⊥⊥ is relevant, we may

neglect higher orders in q̄⊥ from the beginning. Thus,

the evaluation of the Fourier integrals yields

∆I/II
0 (q̄⊥) =

γI/II
n̂ñ(

1 + π
4 γ

I/II

n̂ñ
ξ
)2 , (5.9)

∆I/II
⊥ (q̄⊥) = −q̄⊥

γI/II
n̂ñ

1 + π
4 γ

I/II

n̂ñ
ξ
, (5.10)

∆I/II
⊥⊥(q̄⊥) = −q̄2

⊥
4

πξ
ln
(
1 +

π

4
γI/II
n̂ñ

ξ
)
. (5.11)

Applying ξ = 4uũ(ν∗/ν) ln(Λ/T ) to the renormalized
couplings, Eqs. (5.9)-(5.11), inserting them into Eq. (5.1),
using the integral
∫ 1

0

∫ 1

0
dudũ

uũ+ x−1 ln(1 + xuũ)

(1 + xuũ)2
=

ln2(1 + x)

2x2
,

and adopting the result of Appendix A for the remain-
ing integrations, we obtain for the low temperature non-
analytic part of the thermodynamic potential δΩ the for-
mula

δΩ =
ζ(3)T 3

πv2F

{
ln2(1 + γIπL)

L2
+ 3

ln2(1 + γIIπ L)

L2

}
.

(5.12)

Herein, the quantity L is defined as

L =
πν∗

ν
ln
(Λ
T

)
(5.13)

with ν∗ given by Eq. (3.16). The bare coupling con-

stants γI/IIπ are expressed in terms of the original fermion
interaction potential Ṽ as

γI/IIπ =
ν

2

{
Ṽ (0)± Ṽ (2pF )

}
, (5.14)

cf. Eq. (4.12).
Equation (5.12) constitutes our final result for the non-

analyticities of a two-dimensional Fermi gas with repul-
sive interaction. In the following, we discuss the correc-
tions to the specific heat of the Fermi liquid and possible
instabilities.

C. Corrections to the Fermi liquid

For the Fermi liquid model, the thermodynamic poten-
tial correction δΩ, Eq. (5.12), is a regular function for all

relevant γI/IIπ . By means of the formula

δc = −T
∂2δΩ

∂T 2
(5.15)

we find the anomalous contribution to the specific heat
at low temperatures T in the form

δc = −
6ζ(3)T 2

πv2F

{
ln2(1 + γIπL)

L2
+ 3

ln2(1 + γIIπ L)

L2

}
.

(5.16)

• Re-summation of the BS processes

• Curvature effects : charge and spin channels are coupled

• Re-summation of all non analyticities for the FL theory

Hendrik Meier,CP, Efetov
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"

Results"

In" Fig." 2" we" show" the" inSplane" resistance" (ρ)" and" electronic" specific" heat" (Cel/T)" for"

Sr3Ru2O7"cooling"from"18"K"to"250"mK"at"7.9"tesla"in"a"single"crystal"with""~"3000"Å."Entry"

into"the"ordered"phase"at"Tc"=%1.2"K" is"marked"by"a"kink" in"ρ"and"a"step" in"Cel/T,"but"the"

data"at"higher"temperatures"are"equally"striking."For"over"a"decade"of" temperature,"ρ" is"

nearly" perfectly" linear" in" T," with" Cel/T% varying" as" lnT% over" the" same" range." Somewhat"

similar"behavior"has"been"observed"in"association"with"quantum"criticality"in"a"variety"of"

other"materials.""In"the"present"case"these"functional"dependences"are"obeyed"with"high"

accuracy"all"the"way"down"to"Tc.""

"

!Figure!2:"Resistivity"(blue)"and"electronic"specific"heat"(black"dots)"data"for"Sr3Ru2O7"on"cooling"at"

the" critical" field" of" 7.9" tesla." The" resistivity" was" measured" between" 100" mK" and" 18" K" in" a"

continuous" run" using" an" adiabatic" demagnetisation" refrigerator," and" the" results" of" both" up" and"

down" sweeps"are" shown."The"dotted"grey" line" indicates" the" critical" temperature"of" the"nematic"

phase," and" the" red" curve" is" a" fit" of" the" form" Cel" =" TlnT" to" the" data" between" 1.4" K" and" 18" K,"

extrapolated"to"100"mK."
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SI2!O!Comparison!of!phase!diagrams!based!on!!

thermodynamic!and!transport!data!

!

Figure! S1:" Comparison" of" the" fieldStemperature" phase" diagram" as" extracted" from"

resistivity" and" specific" heat." The" colour" plot" gives" the" exponent" α" of" the" expression""""""""""

ρ=% ρ0+ATα" for" the" resistivity"ρ" with"ρ0" being" the" elastic" scattering" contribution" and"A" a"

prefactor,"both"of"which"are"temperature"independent"(partly"reproduced"from"(7))."The"

data"points" (green)"give" the"position"of" the"maxima" in"Cel/T" as"described" in"Fig."3C."The"

crossover"temperature"T*"to"Fermi"liquid"behaviour"in"resistivity"(α=2)"has"a"similar"field"

dependence"to"that"extracted"from"the"specific"heat"maximum"(Fig."3C"main"paper),"and"

the" two" are" also" in" fairly" good" quantitative" agreement" given" that" each" is" a" somewhat"

arbitrary"definition"of"T*.!

"
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Organic superconductors

2

is found to be in the SDW phase. For finite yet still
small t′b, nesting is no longer perfect but still very good in
the proximity of the inflection points — the hot spots —
of the Fermi surface. Eventually as t′b is increased further
(by applying greater external pressure) beyond a critical
value, nesting will be ineffective and the SDW order is
destroyed. Nesting of finite parts of the Fermi surface at
high temperature is now reduced to four nesting points
at T = 0 as depicted on Fig. 1(a). This picture survives
down to zero-temperature, implying a quantum phase
transition at a critical value of the coupling constant t′b.
Using the parameters of Ref. [10], we have tb∼ 200 K,
and the critical coupling t′b ≈ 25.4 K.
Looking for nontrivial effects such as the observed

QCP, we need to enrich the model of noninteracting
fermions by a proper model for the two-particle interac-
tion. Previous works established that there are three rel-
evant interaction channels in the Bechgaard salts: back-
ward scattering (with the coupling constant g1), forward
scattering (g2), and Umklapp scattering (g3) [10]. The
RG studies have shown that the superconducting fluc-
tuations lead to a drastic decrease of the coupling con-
stants g1 and g2, due to the interplay of Cooper and
SDW fluctuations at the nesting points, whereas the
Umklapp coupling constant g3 remains essentially unaf-
fected. For the following QCP study, we represent the
fermion-fermion interaction as mediated by a bosonic
mode that becomes critical at the QCP. Following the
insight of Ref. [10], we retain only the coupling constant
g3 as medium for the electron-paramagnon interaction.
Our approach allows to analyze both thermodynamic and
transport properties, but considering that g3 is related to
the Umklapp processes enables us to focus mainly onto
the resistivity behavior. We perform calculations on the
level of the Gaussian approximation, which we may ex-
pect to yield at least qualitatively the correct physical
picture.
In a phenomenological low-energy picture, we may as-

sume that after integrating out all high-energy degrees
of freedom, the effective interaction is mediated by long-
wave paramagnon modes. Here, we consider such a
bosonic mode that transfers a momentum of order Q,
cf. Fig. 1(a). The coupling of the bosonic modes to the
electrons generates a self-energy term Πω,q in the boson
propagator χ(iω,Q+q). In the one-loop approximation,
Πω,q is given by the polarization bubble [see Fig. 1(b)],
whose relevant nonanalytic part is

Πω,q =
g3|q⊥|
4π2v

ln

{
(2b4q4⊥)

2

ω2 + ξ2q

}
(2)

with ξq = vq‖ − b3q3⊥ + b4q4⊥. In these formulas, v = |v|
denotes the absolute value of the Fermi velocity at the
hot spots and q‖ (q⊥) is the momentum component par-
allel (perpendicular) to v. Note that we have expanded
the spectrum around the hot spots up to the term of

FIG. 1: (Color online) (a) Brillouin zone with the Fermi
surface and the nesting vector Q connecting two inflection
points P1 and P3. (b) Polarization bubble for the param-
agnon mode. (c) Fermion self-energy.

forth order in q⊥, which is driven by the t′b-unnesting
term in the dispersion relation (1), b4 ∝ t′b, and is the
lowest order to break perfect nesting around the inflec-
tion points. The q4⊥-term is active as soon as the crit-
ical value for t′b is reached. Importantly, the presence
of the q4⊥-term prevents the polarization from produc-
ing mass terms containing logarithms in temperature and
thus establishes the existence of a QCP — for subcritical
values of t′b, the effective absence of forth-order q

4
⊥-terms

leads to logarithms lnT in the bosonic mass so that the
phase transition towards an SDW state sets in at a tem-
perature > 0. The remaining analytic part of the bosonic
spectrum is generically an analytic function of ξ2q. As a
result, we write the effective propagator for the para-

magnons as χ(iω,Q + q) =
[
µ + α(ξq/v)2 + Πω,q

]−1

with α ∼ 1. The bosonic mass µ measures the dis-
tance to the QCP and, close to it, we should consider the
limit µ → 0. The logarithm present in the paramagnon
propagator is characteristic of a Peierls phase transition
and all the anomalous behavior shall ultimately be due
to this nonanalyticity.

Using this effective model for the hot-spot electrons
coupled to critical paramagnons, we are in a position
to investigate their transport properties. The relevant
quantity is the retarded electron self-energy ΣR(ε), which
within the precision of the one-loop approximation is rep-
resented by the Feynman diagram in Fig. 1(c). In the
standard way for an itinerant electron QCP, the momen-
tum dependence of the self-energy is negligible compared
to the energy dependence and the Matsubara self-energy
is thus given by

Σ(iε) = −g3T
∑

iω

∫
dξq
2πv

χ̄(iω, ξq)

i(ε+ ω)− ξq
(3)

with χ̄(iω, ξq) =
∫
(dq⊥/2π) χ(iω,Q + q)

∣∣
ξq=const

. Per-

forming the analytical continuation to real-time frequen-
cies ε, we obtain in the limit ε → 0 for the imaginary
part of the retarded self-energy in the electronic Green’s

3

functions the formula

Im ΣR(ε) ! πT
ln
(
p−2
F µ+ ε2/ε2F

)

ln
(
ε2/ε2F

) . (4)

It shows that at criticality, µ = 0, the self-energy of
hot-spot electrons is linear in temperature, ImΣR

QCP(ε→
0) = πT , and independent from the coupling constants.
As a straightforward consequence, the resistivity of the
hot-spot electrons in the compound would at arbitrarily
low temperatures be linear in T as well. Away from the
QCP, the finite bosonic mass µ suppresses for frequen-
cies |ε| ! v

√
µ the quantity ImΣR(ε), which for ε → 0

tends logarithmically to zero. As a result, since for the
conductivity essential frequencies ε are of order T , a lin-
ear law for the temperature dependence of the hot-spot
resistivity appears only above the critical temperature

TS ∼ v
√
µ . (5)

At the QCP, clearly, TS = 0. Note that, since the
limit T % TS is essentially equivalent to the limit µ → 0,
the coefficient in front of T in the resistivity does effec-
tively not depend on the value of the bosonic mass µ, i.e.
on the applied pressure that determines µ.
We turn now towards a dichotomic description of the

transport properties [18] of the compound in terms of
hot-spot and cold-spot regions on the Fermi surface,
hereby providing a simple model upon which to test the
experimental data of (TMTSF)2PF6 from Ref. [4]. The
conductivity σ(T ) is the sum of contributions from the
entire Fermi surface. Treating separately the contribu-
tions from the hot spots [with the Fermi surface volume
fraction vh] and those due to the cold regions [volume
1− vh], we write σ(T ) as the sum

σ(T ) =
vh

ρ0 + ρhot(T )
+

1− vh
ρ0 + ρcold(T )

. (6)

In circuit language, see the inset of Fig. 2, this formula
corresponds to the parallel arrangement of the resistances
due to the hot and cold regions of the Fermi surface while
each of the two resistances is viewed as a series of the
residual resistance and a specific temperature-dependent
one. The residual resistivity ρ0 is experimentally given
by the T → 0 limit and is the result of elastic scat-
tering processes. Guided by the preceding theoretical
considerations, we specify in the following the form of
the temperature-dependent resistivities ρhot/cold(T ) and
their underlying scattering processes in the hot and cold
regions.
For the cold regions, we may for all temperatures as-

sume the quadratic law ρcold(T ) = BT 2 accounting for
the electron-electron scattering processes typical of the
metallic behavior. At a sufficiently high temperature
T > T0, the notion of cold and hot regions is irrele-
vant so that we may expect the same law also in the
hot regions, ρhot(T ) = BT 2. Lowering the temperature,

TABLE I: Temperature dependencies of the resistivities of hot
and cold electrons.

temperature region ρhot(T ) ρcold(T )

T > T0 BT 2

TS < T < T0 AT BT 2

T < TS CT 2 BT 2

we encounter at a temperature T0 the crossover into the
quantum critical regime. Here, (Umklapp) scattering of
hot conduction electrons through the quantum critical
paramagnons leads according to the preceding analysis
to a linear law ρhot(T ) = AT , cf. Eq. (4). Below a second
crossover temperature TS , Eq. (5), the linear resistivity
is suppressed and one should again expect a Fermi-liquid
like behavior, ρhot(T ) = CT 2, though with an effective
quasi-particle mass heavily renormalized by the interac-
tion with paramagnons close to criticality. At the QCP,
TS = 0 so that the linear law for ρhot(T ) prevails down
to zero temperature while at high enough pressure, the
differentiation between hot and cold regions is no longer
valid so that we expect C → B and the critical window
between TS and T0 to shrink to zero. Table I summarizes
the temperature laws for the three regimes.

Applying the dichotomic description (6) to the exper-
imental data on the transport in (TMTSF)2PF6 [4], the
coefficient B is fixed from the quadratic resistivity law
ρ0+BT 2 at high temperatures (∼ 30 K) while the resid-
ual resistivity ρ0 is given by the T → 0 intercept of the
data. Then, we extract the critical regime TS < T < T0

where the fitting procedure yields according to Eq. (6)
the coefficient A. Last, we use the low-temperature
(T < TS) form of Eq. (6) to determine the coefficient C.
Within the philosophy of the resistor model, A and C
should be kept constant as a function of temperature
inside the temperature regime they appear in. This en-
sures that the regime is properly defined according to
Eq. (6) and Table I. Theoretically, we may expect log-
arithmic corrections, see Eq. (4), but when comparing
with experiments, these are fairly approximated by con-
stants. Finally, we determine the crossover tempera-
tures TS and T0 as the intersections of the asymptotic
forms for each regime.

Figure 2 shows the pressure dependence of B, C, and
vh as a result of the fitting analysis of σ(T ) between 0.15
and 34 K at seven different pressures according to the
procedure discussed above. In line with the theoretical
prediction, we may assume that A is independent from
pressure. Treated as a free fitting parameter, it would
mildly jitter around A = 0.38 µΩ cm/K, confirming the
assumption of A being constant. The coefficient B is re-
lated to the effective mass in the cold regions, B ∼ m2

‖.
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is found to be in the SDW phase. For finite yet still
small t′b, nesting is no longer perfect but still very good in
the proximity of the inflection points — the hot spots —
of the Fermi surface. Eventually as t′b is increased further
(by applying greater external pressure) beyond a critical
value, nesting will be ineffective and the SDW order is
destroyed. Nesting of finite parts of the Fermi surface at
high temperature is now reduced to four nesting points
at T = 0 as depicted on Fig. 1(a). This picture survives
down to zero-temperature, implying a quantum phase
transition at a critical value of the coupling constant t′b.
Using the parameters of Ref. [10], we have tb∼ 200 K,
and the critical coupling t′b ≈ 25.4 K.
Looking for nontrivial effects such as the observed

QCP, we need to enrich the model of noninteracting
fermions by a proper model for the two-particle interac-
tion. Previous works established that there are three rel-
evant interaction channels in the Bechgaard salts: back-
ward scattering (with the coupling constant g1), forward
scattering (g2), and Umklapp scattering (g3) [10]. The
RG studies have shown that the superconducting fluc-
tuations lead to a drastic decrease of the coupling con-
stants g1 and g2, due to the interplay of Cooper and
SDW fluctuations at the nesting points, whereas the
Umklapp coupling constant g3 remains essentially unaf-
fected. For the following QCP study, we represent the
fermion-fermion interaction as mediated by a bosonic
mode that becomes critical at the QCP. Following the
insight of Ref. [10], we retain only the coupling constant
g3 as medium for the electron-paramagnon interaction.
Our approach allows to analyze both thermodynamic and
transport properties, but considering that g3 is related to
the Umklapp processes enables us to focus mainly onto
the resistivity behavior. We perform calculations on the
level of the Gaussian approximation, which we may ex-
pect to yield at least qualitatively the correct physical
picture.
In a phenomenological low-energy picture, we may as-

sume that after integrating out all high-energy degrees
of freedom, the effective interaction is mediated by long-
wave paramagnon modes. Here, we consider such a
bosonic mode that transfers a momentum of order Q,
cf. Fig. 1(a). The coupling of the bosonic modes to the
electrons generates a self-energy term Πω,q in the boson
propagator χ(iω,Q+q). In the one-loop approximation,
Πω,q is given by the polarization bubble [see Fig. 1(b)],
whose relevant nonanalytic part is

Πω,q =
g3|q⊥|
4π2v

ln

{
(2b4q4⊥)

2

ω2 + ξ2q

}
(2)

with ξq = vq‖ − b3q3⊥ + b4q4⊥. In these formulas, v = |v|
denotes the absolute value of the Fermi velocity at the
hot spots and q‖ (q⊥) is the momentum component par-
allel (perpendicular) to v. Note that we have expanded
the spectrum around the hot spots up to the term of

FIG. 1: (Color online) (a) Brillouin zone with the Fermi
surface and the nesting vector Q connecting two inflection
points P1 and P3. (b) Polarization bubble for the param-
agnon mode. (c) Fermion self-energy.

forth order in q⊥, which is driven by the t′b-unnesting
term in the dispersion relation (1), b4 ∝ t′b, and is the
lowest order to break perfect nesting around the inflec-
tion points. The q4⊥-term is active as soon as the crit-
ical value for t′b is reached. Importantly, the presence
of the q4⊥-term prevents the polarization from produc-
ing mass terms containing logarithms in temperature and
thus establishes the existence of a QCP — for subcritical
values of t′b, the effective absence of forth-order q

4
⊥-terms

leads to logarithms lnT in the bosonic mass so that the
phase transition towards an SDW state sets in at a tem-
perature > 0. The remaining analytic part of the bosonic
spectrum is generically an analytic function of ξ2q. As a
result, we write the effective propagator for the para-

magnons as χ(iω,Q + q) =
[
µ + α(ξq/v)2 + Πω,q

]−1

with α ∼ 1. The bosonic mass µ measures the dis-
tance to the QCP and, close to it, we should consider the
limit µ → 0. The logarithm present in the paramagnon
propagator is characteristic of a Peierls phase transition
and all the anomalous behavior shall ultimately be due
to this nonanalyticity.

Using this effective model for the hot-spot electrons
coupled to critical paramagnons, we are in a position
to investigate their transport properties. The relevant
quantity is the retarded electron self-energy ΣR(ε), which
within the precision of the one-loop approximation is rep-
resented by the Feynman diagram in Fig. 1(c). In the
standard way for an itinerant electron QCP, the momen-
tum dependence of the self-energy is negligible compared
to the energy dependence and the Matsubara self-energy
is thus given by

Σ(iε) = −g3T
∑

iω

∫
dξq
2πv

χ̄(iω, ξq)

i(ε+ ω)− ξq
(3)

with χ̄(iω, ξq) =
∫
(dq⊥/2π) χ(iω,Q + q)

∣∣
ξq=const

. Per-

forming the analytical continuation to real-time frequen-
cies ε, we obtain in the limit ε → 0 for the imaginary
part of the retarded self-energy in the electronic Green’s

3

functions the formula

Im ΣR(ε) ! πT
ln
(
p−2
F µ+ ε2/ε2F

)

ln
(
ε2/ε2F

) . (4)

It shows that at criticality, µ = 0, the self-energy of
hot-spot electrons is linear in temperature, ImΣR

QCP(ε→
0) = πT , and independent from the coupling constants.
As a straightforward consequence, the resistivity of the
hot-spot electrons in the compound would at arbitrarily
low temperatures be linear in T as well. Away from the
QCP, the finite bosonic mass µ suppresses for frequen-
cies |ε| ! v

√
µ the quantity ImΣR(ε), which for ε → 0

tends logarithmically to zero. As a result, since for the
conductivity essential frequencies ε are of order T , a lin-
ear law for the temperature dependence of the hot-spot
resistivity appears only above the critical temperature

TS ∼ v
√
µ . (5)

At the QCP, clearly, TS = 0. Note that, since the
limit T % TS is essentially equivalent to the limit µ → 0,
the coefficient in front of T in the resistivity does effec-
tively not depend on the value of the bosonic mass µ, i.e.
on the applied pressure that determines µ.
We turn now towards a dichotomic description of the

transport properties [18] of the compound in terms of
hot-spot and cold-spot regions on the Fermi surface,
hereby providing a simple model upon which to test the
experimental data of (TMTSF)2PF6 from Ref. [4]. The
conductivity σ(T ) is the sum of contributions from the
entire Fermi surface. Treating separately the contribu-
tions from the hot spots [with the Fermi surface volume
fraction vh] and those due to the cold regions [volume
1− vh], we write σ(T ) as the sum

σ(T ) =
vh

ρ0 + ρhot(T )
+

1− vh
ρ0 + ρcold(T )

. (6)

In circuit language, see the inset of Fig. 2, this formula
corresponds to the parallel arrangement of the resistances
due to the hot and cold regions of the Fermi surface while
each of the two resistances is viewed as a series of the
residual resistance and a specific temperature-dependent
one. The residual resistivity ρ0 is experimentally given
by the T → 0 limit and is the result of elastic scat-
tering processes. Guided by the preceding theoretical
considerations, we specify in the following the form of
the temperature-dependent resistivities ρhot/cold(T ) and
their underlying scattering processes in the hot and cold
regions.
For the cold regions, we may for all temperatures as-

sume the quadratic law ρcold(T ) = BT 2 accounting for
the electron-electron scattering processes typical of the
metallic behavior. At a sufficiently high temperature
T > T0, the notion of cold and hot regions is irrele-
vant so that we may expect the same law also in the
hot regions, ρhot(T ) = BT 2. Lowering the temperature,

TABLE I: Temperature dependencies of the resistivities of hot
and cold electrons.

temperature region ρhot(T ) ρcold(T )

T > T0 BT 2

TS < T < T0 AT BT 2

T < TS CT 2 BT 2

we encounter at a temperature T0 the crossover into the
quantum critical regime. Here, (Umklapp) scattering of
hot conduction electrons through the quantum critical
paramagnons leads according to the preceding analysis
to a linear law ρhot(T ) = AT , cf. Eq. (4). Below a second
crossover temperature TS , Eq. (5), the linear resistivity
is suppressed and one should again expect a Fermi-liquid
like behavior, ρhot(T ) = CT 2, though with an effective
quasi-particle mass heavily renormalized by the interac-
tion with paramagnons close to criticality. At the QCP,
TS = 0 so that the linear law for ρhot(T ) prevails down
to zero temperature while at high enough pressure, the
differentiation between hot and cold regions is no longer
valid so that we expect C → B and the critical window
between TS and T0 to shrink to zero. Table I summarizes
the temperature laws for the three regimes.

Applying the dichotomic description (6) to the exper-
imental data on the transport in (TMTSF)2PF6 [4], the
coefficient B is fixed from the quadratic resistivity law
ρ0+BT 2 at high temperatures (∼ 30 K) while the resid-
ual resistivity ρ0 is given by the T → 0 intercept of the
data. Then, we extract the critical regime TS < T < T0

where the fitting procedure yields according to Eq. (6)
the coefficient A. Last, we use the low-temperature
(T < TS) form of Eq. (6) to determine the coefficient C.
Within the philosophy of the resistor model, A and C
should be kept constant as a function of temperature
inside the temperature regime they appear in. This en-
sures that the regime is properly defined according to
Eq. (6) and Table I. Theoretically, we may expect log-
arithmic corrections, see Eq. (4), but when comparing
with experiments, these are fairly approximated by con-
stants. Finally, we determine the crossover tempera-
tures TS and T0 as the intersections of the asymptotic
forms for each regime.

Figure 2 shows the pressure dependence of B, C, and
vh as a result of the fitting analysis of σ(T ) between 0.15
and 34 K at seven different pressures according to the
procedure discussed above. In line with the theoretical
prediction, we may assume that A is independent from
pressure. Treated as a free fitting parameter, it would
mildly jitter around A = 0.38 µΩ cm/K, confirming the
assumption of A being constant. The coefficient B is re-
lated to the effective mass in the cold regions, B ∼ m2

‖.
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hot conduction electrons through the quantum critical
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The Modulated Spin Liquid = Hidden Order in URu2Si2
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proximated value for the critical stress 1 � a/a0 ⇡ 1.45 ⇥218

10

�3 [8]. To have a good agreement with experiment, we219

also choose the linear coefficient of Jinter(a), B1, to have the220

same slope of T0, as observed experimentally, and we define221

B2 = B1 ⌘ B for simplicity. Both Jinter(a) and Jintra(a) in-222

crease their absolute values when 1 � a/a0 increases. Our223

choice of the interaction parameters variation is, of course,224

a simplified view of the experiment: if we apply an uniaxial225

stress, the in-plane lattice parameters become different. In our226

case both in-plane parameters decrease in the same way.227

The resulting phase diagram is shown in FIG. 4. The varia-228

tion on 1� a/a0 shows very good agreement with the exper-229

imental results.We define T�Q , T�0 and T
SQAF

as the critical230

temperatures for the parameters �Q, �0 and SQAF , respec-231

tively. Increasing 1�a/a0, the MSL critical temperature T�Q ,232

increases linearly until it reaches the AF ordering temperature233

T
SQAF

and then it goes to zero showing a re-entrance behavior234

due the presence of the hopping t00. The homogeneous com-235

ponent T�0 , shows a similar variation, although with a bigger236

amplitude for t00 different from zero. In our model, �0 persists237

for big values of T or 1�a/a0, but with a small intensity. For238

the sake of simplicity, we define T�0 when �0 = 0.6 K. The239

T
SQAF

also increases with 1 � a/a0, but it shows two differ-240

ent behaviors: at first, a fast increase when it is inside the SL241

phase and, a linear increase outside the SL. Here the effect of242

hopping is visible: without this effect, T
SQAF

will present just243

linear slopes. A first order transition can also be obtained for244

T
SQAF

inside the MSL phase when t00 is present.245

FIG. 4. The phase diagram for the modulation Q3 as function of
deformation (1 � a/a0) and T . Inside the surfaces the mean-field
amplitudes are different from zero. There is a region where the three
order parameters coexist. The circle (red), square (blue) and triangle
(green) lines represent the critical temperatures for the parameters
�Q, �0 and SQAF , respectively. The parameters used are: t00 =
�2.5 K, Jintra(a0) = �6.5 K, Jinter(a0) = 37 K and B = 800 K.

In conclusion, we have developed a modulated spin liq-246

uid model in the realistic three-dimensional BCT-lattice. This247

provides a simple scenario for URu2Si2, where the hidden or-248

der results from a quantum phase transition with a very un-249

usual behavior: the magnetic moments of the AF phase melt250

at low pressure, restoring the time reversal symmetry, but the251

lattice symmetry breaking is still present. We analyzed how252

this SL melting in a BCT-lattice can lead to different mod-253

ulation wave-vectors, among which Q3 = (1, 1, 1) is found254

to be the most stable energetically. The theoretical phase di-255

agram reproduces qualitatively well what is observed experi-256

mentally for URu2Si2. We identify a second order transition257

at T0 ⇡ 17.5 K and a first order transition from the MSL phase258

to the AF phase at low temperature. The linear dependence of259

Jintra and Jinter with the variation 1�a/a0 is a key point of our260

study, which is confirmed by experimental results [8]. Our261

results clearly show that the choice of an appropriate mod-262

ulation vector is crucial for the stability of the MSL phase.263

This could be directly checked experimentally by INS mea-264

surements. By comparing all crystallographic directions one265

could find clear evidence for what this preferable modulation266

might be. Raman scattering experiments could also provide267

another independent check of our results since the orientation268

dependence of Raman spectrum could establish if the modu-269

lation is indeed characterized or not by our Q3 vector. We270

believe that our study is a very good test for a MSL paradigm.271
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FIG. 1. Schematic phase diagram (T,H, p) of URu2Si2. The data come from Ref.[3–6]. px ! 0.5

GPa corresponds to the critical pressure, p∗ ! 1.4 to the pressure where URu2Si2 transits directly

from PM state to AF state. The superconducting phase is not presented to simplify the phase

diagram.

(lattice parameter or ratio of lattice parameters) governs the magnetic behavior of the sys-

tem. However uniaxial stress is a tool which is not used very often with neutron scattering

as there is a high probability to break the sample and as large crystals with good ratio of

the height by the diameter must be selected to realize a homogeneous uniaxial stress condi-

tions. In spite of this, neutron users prefer to use thin samples as for the first experiment

on URu2Si212 with the difficulty of poor homogeneity.

This paper is organized as follows. In section II, we present the experimental set-up. The

results are presented in section III. Section IV is dedicated to the discussion of our results

and their comparisons with previous data. Finally concluding remarks are given in section

V.

II. EXPERIMENTAL SET-UP

Uniaxial stress was applied along the a-axis of two single crystals of URu2Si2 coming

from different batches. The first one is a small sample with a perfect cylindric shape of

diameter (d) 3.78 mm and height (h) 1.66 mm and the second one has a parallelepiped

shape of surface 12 mm2 with a vertical a-axis of 8 mm length. An important parameter to

3
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