Three new Insights on Quantum Criticality

Beijing, Nov. 11th, 2012

K.B. Efetov

H. Meier

M. Norman

I. Paul

C. Pépin (IPhT, CEA-Saclay)

IIP, Natal

Heavy Fermion Metals: Extreme Limit of Mass Renormalization.

2

Crystal Electric Field effects split the big moments and compete with Hunds rules

- ---- Ferromagnetic fluctuations
- \longrightarrow valence fluctuations
- \longrightarrow multiple stage screening ?

Two scenarios

Spin Density Wave

SDW scenario: big Fermi surface at the QCP

Kondo Breakdown

QCP with fractionalization

Breakdown of the Kondo effect associated with a Mott transition on the f-electrons

Zhu, Martin, PNP (09)

breakdown

modulations in Kondo

P. Coleman (Schroder 2000) deconfinement, fractionalization

Burdin, Grempel, Georges (98) breakdown by exhaustion

B. Jones (2010) RG on Kondo Breakdown

Q. Si, Nature (02-) S. Kirchner (06,08) locally quantum critical

Pines, Yang, Fisk (08) two fluids model

Continentino (09) Vekhter + Seo+ CP (10) Paul ,Norman (10) SC quantum critical point

CP, Norman ,Paul (07) selective Mott transition, z=3 regime of fluctuations Senthil, Sachdev ,Vojta (04) model for fractionalization, spin liquid Doping plays the role of pressure

Is there a spin liquid on the left of T*?

Differentiate the scenarios where the KB is tight to AFM transition (Si et al.) from the ones where the KB is alone

T* related to a Lifchitz transition

Vojta, Benlagra ('12)

Pressure induced SC and Fermi surface reconfiguration in 115

dimanche 11 novembre 12

Quantum criticality

Theoretical approaches

Low energy properties \longleftrightarrow Universality

Universality

Low energy properties \longleftrightarrow Universality

Low energy, slow, universal part

What is observed around some QCP in heavy fermions

$$\begin{split} \rho(T) &\sim T \ , & & \text{Universal} \\ \chi(T) &\sim T^{-\alpha} \ , \ \text{with} \ \alpha \leq 1 \\ \gamma_p(T) &= \frac{C_P}{T} \sim T^{-\beta} \ , \ \text{with} \ \beta \leq 1 \ . \end{split}$$

Universality

Landau Fermi liquid theory verified by ``all `` conductors above 1D

 $\rho(T) \sim T^2$,

 $\chi(T) \sim \mu_0^2 \rho(\epsilon_F) ,$ $\gamma_p(T) = \frac{C_P}{T} \sim \frac{k_B^2 \pi^2}{2} \rho(\epsilon_F) .$ Universal exponents

Can we integrate the fermions out of the partition function?

$$\int \phi^4$$
 effective bosonic theory

For example z=2

fermions are mass-less but fast compared to bosons?

$$D^{-1}(q,\Omega) = \frac{|\Omega|}{E_F} + \frac{q^2}{k_F^2}$$

Can we integrate the fermions out of the partition function?

 $\int \phi^4$ effective bosonic theory

For example z=2

fermions are mass-less but fast compared to bosons?

8

transverse modes are slow! (controlled by boson fluctuations)

 $\begin{aligned} q_{radial} &\sim T \\ q_{transverse} &\sim \sqrt{T} \end{aligned}$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \epsilon_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}$$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \epsilon_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}$$

Rech, CP, Chubukov (06)

The bare power counting diverges in $d \leq 3$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \, \boldsymbol{\epsilon}_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \, \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}.$$

d=2

Rech, CP, Chubukov (06)

The bare power counting diverges in $d \leq 3$

- neglect vertex corrections
- dressed propagators (self-energy)

$$\alpha \sim \frac{\bar{g}^2}{\gamma v_F^3} \sim \frac{\bar{g}}{NE_F} \ll 1 \qquad \beta \sim \frac{m\bar{g}}{\gamma v_F} \sim \frac{m_B}{Nm} \ll 1.$$

$$\begin{split} H_{sf} &= \sum_{k,\alpha} \epsilon_k c_{k,\alpha}^{\dagger} c_{k,\alpha} + \sum_q \chi_{s,0}^{-1}(q) \mathbf{S}_q \mathbf{S}_{-q} \\ &+ g \sum_{k,q,\alpha,\beta} c_{k,\alpha}^{\dagger} \boldsymbol{\sigma}_{\alpha\beta} c_{k+q,\beta} \cdot \mathbf{S}_q, \end{split}$$

$$\chi_{s,0}(q,\Omega) = \frac{\chi_0}{\xi^{-2} + q^2 + A\Omega^2 + O(q^4,\Omega^4)}.$$

d=2

Rech, CP, Chubukov (06) The bare power counting diverges in $d \leq 3$

$$|q| \to d = 2$$
$$q^2 \log q \to d = 3$$

Belitz, Vojta, Kirkpatrick(03), Chubukov, Maslov (07) Green, ben Simon(11)

- neglect vertex corrections
- dressed propagators (self-energy)

$$\alpha \sim \frac{\bar{g}^2}{\gamma v_F^3} \sim \frac{\bar{g}}{NE_F} \ll 1 \qquad \beta \sim \frac{m\bar{g}}{\gamma v_F} \sim \frac{m_B}{Nm} \ll 1$$

And the culprit is ...

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

Fermi liquid

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

Fermi liquid

 $2k_F$ - scattering processes the back -scattering

affecting AFM, nematic, and Ferro

- FS deformed at the hot spots
- anomalous exponents

Fermi liquid

Metlitski, Sachdev (2010)

Pseudo-gap from quantum criticality

K.B.Efetov, H.Meier, C.P.

AFM QCP in d=2

Pseudo-gap from quantum criticality

K.B.Efetov, H.Meier, C.P.

$$c_{\mathbf{p}}^{\mathrm{pp}}\left\langle \left(i\sigma_{2}\right)_{\alpha\beta}\psi_{\alpha,\mathbf{p}}\psi_{\beta,-\mathbf{p}}\right\rangle + c_{\mathbf{p}}^{\mathrm{ph}}\left\langle \delta_{\alpha\beta}\psi_{\alpha,\mathbf{p}}\psi_{\beta,-\mathbf{p}}^{*}\right\rangle,$$

AFM QCP in d=2

Pseudo-gap from quantum criticality

K.B.Efetov, H.Meier, C.P.

 $c_{\mathbf{p}}^{\mathrm{pp}}\left\langle \left(i\sigma_{2}\right)_{\alpha\beta}\psi_{\alpha,\mathbf{p}}\psi_{\beta,-\mathbf{p}}\right\rangle + c_{\mathbf{p}}^{\mathrm{ph}}\left\langle \delta_{\alpha\beta}\psi_{\alpha,\mathbf{p}}\psi_{\beta,-\mathbf{p}}^{*}\right\rangle,$

AFM QCP in d=2

Pseudo-Gap equations around the QCP are universal

$$\bar{b}\left(\bar{\varepsilon}\right) = \bar{T}\sum_{\bar{\varepsilon}'} \frac{\cos\Theta\left(\bar{\varepsilon}'\right)}{\sqrt{\bar{\Omega}\left(\bar{\varepsilon} - \bar{\varepsilon}'\right)}},$$
$$\bar{f}\left(\bar{\varepsilon}\right) = \bar{\varepsilon} + \bar{T}\sum_{\bar{\varepsilon}'} \frac{\sin\Theta\left(\bar{\varepsilon}'\right)}{\sqrt{\bar{\Omega}\left(\bar{\varepsilon} - \bar{\varepsilon}'\right)}},$$
$$\bar{\Omega}\left(\bar{\omega}\right) = 2\pi\bar{T}\sum_{\bar{\varepsilon}} \sin^2\left(\frac{\Theta\left(\bar{\varepsilon} + \bar{\omega}\right) - \Theta\left(\bar{\varepsilon}\right)}{2}\right)$$

Pseudo-Gap equations around the QCP are universal

Recent susy-bosonization in high dimensions : application to Fermi liquid theory

Hendrik Meier, CP, Efetov

- Re-summation of the BS processes
- Curvature effects : charge and spin channels are coupled
- Re-summation of all non analyticities for the FL theory

$$\delta\Omega = \frac{\zeta(3)T^3}{\pi v_F^2} \left\{ \frac{\ln^2(1+\gamma_\pi^{\rm I}L)}{L^2} + 3 \ \frac{\ln^2(1+\gamma_\pi^{\rm II}L)}{L^2} \right\}$$

 $-Q, \tilde{\mathbf{n}}$

$$\gamma_I = \gamma_c - 3\gamma_s$$
$$\gamma_{II} = \gamma_c + \gamma_s$$

* <u>K.B. Efetov, C. Pepin, H. Meier,</u> **Exact bosonization for an interacting Fermi gas in arbitrary dimensions** Phys. Rev. Lett. 103,186403 (2009); PRB 82,235120 (2010), preprint 2011

(a)

(b) $-K, \mathbf{n} \qquad K+Q, \mathbf{n} + \frac{\mathbf{q}_{\perp}}{2p_{F}}$ $-\tilde{K}, \tilde{\mathbf{n}} \qquad \tilde{K}-Q, \tilde{\mathbf{n}} - \frac{\mathbf{q}_{\tilde{\perp}}}{2p_{F}}$ $-K, \mathbf{n} \qquad K+Q, \mathbf{n} + \frac{\mathbf{q}_{\perp}}{2p_{F}} \qquad Q, \mathbf{n}$ $\mathcal{S}_{3} \qquad \mathcal{S}_{2}$

 $-Q, \tilde{\mathbf{n}}$

 $q_{\mathbf{n}}(K) =$

 K, \mathbf{n}

Organic superconductors

H. Meier, P. Auban-Senzier, D. Jerome, C.P.

$$\Pi_{\omega,\mathbf{q}} = \frac{g_3 |q_{\perp}|}{4\pi^2 v} \ln\left\{\frac{(2b_4 q_{\perp}^4)^2}{\omega^2 + \xi_{\mathbf{q}}^2}\right\}$$

Im
$$\Sigma^R(\varepsilon) \simeq \pi T \frac{\ln\left(p_F^{-2}\mu + \varepsilon^2/\varepsilon_F^2\right)}{\ln\left(\varepsilon^2/\varepsilon_F^2\right)}$$

Organic superconductors

H. Meier, P. Auban-Senzier, D. Jerome, C.P.

$$\sigma(T) = \frac{v_h}{\rho_0 + \rho_{\text{hot}}(T)} + \frac{1 - v_h}{\rho_0 + \rho_{\text{cold}}(T)}$$

Two types of fermions and anomalous hybridization fluctuations

I. Paul, M. Norman, C.P.

dimanche 11 novembre 12

Two types of fermions and anomalous hybridization fluctuations

I. Paul, M. Norman, C.P.

dimanche 11 novembre 12

Two types of fermions and anomalous hybridization fluctuations

I. Paul, M. Norman, C.P.

The Modulated Spin Liquid = Hidden Order in URu2Si2

Thomas, Burdin, Ferraz and CP, Preprint (2012)

MSL valence bound

AFM Order

• Strong experimental evidence for anomalous quantum criticality in HF compounds

• Breakdown of the conventional techniques which integrate out the fermions for (almost all?) models below d=3.

• Many mysteries remain : linear in T resistivity, pseudo-gap regimes.

• Three insights

• Strong experimental evidence for anomalous quantum criticality in HF compounds

• Breakdown of the conventional techniques which integrate out the fermions for (almost all?) models below d=3.

• Many mysteries remain : linear in T resistivity, pseudo-gap regimes.

→ AFM QCP in d=2 generates a pseudo-gap

• Three insights

• Strong experimental evidence for anomalous quantum criticality in HF compounds

• Breakdown of the conventional techniques which integrate out the fermions for (almost all?) models below d=3.

• Many mysteries remain : linear in T resistivity, pseudo-gap regimes.

• Strong experimental evidence for anomalous quantum criticality in HF compounds

• Breakdown of the conventional techniques which integrate out the fermions for (almost all?) models below d=3.

• Many mysteries remain : linear in T resistivity, pseudo-gap regimes.

