Unconventional superconducting characteristics of heavy fermion actinide superconductors

> Yoshinori Haga Advanced Science Research Center Japan Atomic Energy Agency

Unconventional superconducting characteristics of heavy fermion actinide superconductors

> Yoshinori Haga Advanced Science Research Center Japan Atomic Energy Agency

Collaborators

Np samples :

D. Aoki, Y. Homma, Y. Shiokawa (IMR, Tohoku Univ.) S. Ikeda, H. Sakai (JAEA-Tokai)

Pu samples : K. Nakajima, Y. Arai (JAEA-Oarai)

TRU measurements / characterization :
T.D. Matsuda, N. Tateiwa, E. Yamamoto, A. Nakamura
H. Chudo, Y. Tokunaga, S. Kambe, H. Yasuoka (JAEA-Tokai)

Rare earth samples : F. Honda, R. Settai, Y. Onuki (Osaka Univ.)

Discussions :

K. Gofryk (LANL), J.-C. Griveau, E. Colineau, R. Caciuffo (ITU) Z. Fisk

Outline

I. Introduction to actinide material

2. Crystal growth facility

3. Bulk magnetization anomaly in the superconducting state

Wigner-Seitz radius

Los Alamos Science (2000)

4f:La Ce Pr Nd Pm Sm ... 5f:Ac Th Pa U Np Pu ...

Structural Transition in Pu metal

f-electron Heavy Fermion superconductors

	compound	T _c (K)	C _e / T (mJ/K ² mol)	T _m (K)	1961 Nb₃Sn
1979	CeCu ₂ Si ₂	0.6	~ 1000		
	UPt ₃	0.45, 0.55	500	5 (fluctuating)	1986
	UBe ₁₃	0.9	1000		cuprate
1990	U ₂ PtC ₂	1.5	75		
	URu ₂ Si ₂	1.4	60	17.5	
	UPd ₂ Al ₃	2.0	145	14.3	
	UNi ₂ Al ₃	1.0	300	4	
2001 2002 2006 2007	Celn ₃ , CePd ₂ Si ₂ , CeRh ₂ Si ₂ : pressure-induced				
	CeCoIn ₅	2.3	500		2001 MaB ₂
	CeRhIn ₅ : pressure-induced				
	CelrIn₅	0.4	500		
	PuCoGa ₅	18.5	70		ing name and
	PuRhGa₅	8.5	70		2004 diamond
	URhGe	0.15	150	10 (ferro)	
	CePt ₃ Si	0.5	300	2.3	
	PrOs ₄ Sb ₁₂	1.5	~ 500		
	Ce <i>T</i> Si ₃ (<i>T</i> = Rh, Ir), CeCoGe ₃ , UIr : pressure-induced				
	NpPd ₅ Al ₂	4.9	200		2008 50-06
	UCoGe	0.8	150	3 (ferro)	

Sample Preparation

Starting material (available amount) Th (kg), U (kg), NpO₂ (10 g), ²³⁹Pu (10 g), ²⁴²PuO₂ (1 g)

Purification of starting material Th, U : solid state electrotransport Np : amalgamation process Pu : coupled-reduction technique

Crystal growth technique Czochralski pulling:Th & U Flux growth : all elements Bridgman growth : all elements Vapor transport :Th, U, Np

Characterization XRD (powder / single crystal), EPMA

mini vacuum chamber for Transuranium measurement

specific heat setup semi quantitative ac-method

0.6 mm

metallic container (Al or Bs) (15 x 15 x 15 mm³) indium-sealed (no superleak) electrical feed through fits in DR and 15 T magnet with rotator

Actinide single crystals

Aoki, Homma, Matsuda, Ikeda, Haga et al. 2003-2011

NpRhGa₅

NpGe₃

NpIn₃

NpSb₂

密封されたPuRhGa5

NpSn₃

3.5 mm

PuIn₃

5mm

NpNiGa₅

4mm

NpPtGa₅

3mm

NpPb₃

4 mm

NpAl₄

100

NpFe₄P₁₂

$NpPd_5Al_2$

NpPd₅Al₂

• first Np-HFSC

• structural similarity with Pu-115 structure

D. Aoki et al., J. Phys. Soc. Jpn. 76 (2007) 063701.

Anisotropy in Magnetism and Superconductivity

XY-type anisotropy 3.22 μ_B/Np for [100] (3.62 μ_B/Np for Np⁴⁺, 2.68 for Np³⁺)

H_{c2} suppressed for magnetic easy axis Pauli-limiting --- singlet pairing suggested

HFSC without 1st order transition at Hc2 : CeRu2, UPd2Al3, UPt3, UBe13

0

-5

-10

-15

0.0

Y. Shimizu et al., J. Phys. Conf. Ser. 273 (2011) 012084

B [T]

4.0

3.0

2.0

1.0

UBe₁₃

0.24 K

5.0

B || [110]

6.0

7.0

HFSC with 1st order transition at H_{c2} : NpPd₅Al₂, CeColn₅, URu₂Si₂

D. Aoki et al., J. Phys. Soc. Jpn. 76 (2007) 063701.

Equilibrium magnetization :1st order transition at H_{c2}

 $M_{\rm eq} = (M_+ + M_-) / 2$

$$M_{\rm norm} = \chi_1 H + \chi_3 H^3$$

AI-NMR

H. Chudo et al., JPSJ (2008)

Magnetic Torque around [001] axis

 $1/2\chi_a H_{c2}(a)^2 \approx 1/2\chi_c H_{c2}(c)^2$

low-T C_p(T) anomaly

sudden recovery of Heavy Fermion above H_{c2}

NpPd₅Al₂ : Heavy Fermion superconductor

tetragonal ZrNi₂Al₅-type $T_c = 4.9 \text{ K}$ $C(T_c)/T = 200 \text{ mJ/K}^2\text{mol}, \Delta C/\gamma T_c = 2.23$ Pauli-limited critical field 1st order transition at H_{c2} Curie-Weiss law in normal state Np³⁺ or Np⁴⁺ - vanishes in the superconducting state ...

- huge heavy fermion spin susceptibility (> 80 % of bulk χ)

How about other heavy Fermion superconductors

- UPd₂Al₃ \sim 10 % of bulk χ contribute to SC : NMR, μ SR
- CeCoIn₅ \sim 60 %
- UPt₃ small ? (odd parity)
- URu₂Si₂ small ?
- UBe₁₃ small ?
- CeCu_2Si_2 \sim 100 % ? from NMR
- Pu superconductors ?
- High-T_c cuprates ?
- pnictides ?
- related to spin-resonance ?

unit cell volume : localized ? itinerant ?

LnPd₅Al₂ follow the Ln^{3+} line except for Ce AnPd₅Al₂ : An^{4+} for Th, U. Np-Pu- approach to trivalent : consistent with $\chi(T)$

Y. Haga et al. (2008), J-C. Griveau et al., (2008), R.A. Ribeiro et al., (2009)

UPd₅Al₂ : Uniaxial magnetic anisotropy NpPd₅Al₂ : XY-type C-W law above 50 K, CEF-singlet ? (5f²) as in PrPd₅Al₂ (4f²)

PuPd₅Al₂ : Antiferromagnetic at 5 K Gofryk (2008)

Summary NpPd₅Al₂ : first-order transition at H_{c2} magnetic susceptibility and electronic specific heat suppressed below H_{c2} large electronic entropy remains at low temperatures. ²³⁷Np nuclear contribution ?

UPd₅Al₂ : CEF-singlet ground state : U⁴⁺ suggested

magnetic anisotropy in *An*Pd₅Al₂ Ce, Pr, U - uniaxial Np - XY type Ce under pressure ?? Pu ??