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superconductivity in proximity to magnetic order

¢ Besides phase diagrams, are there other similarities among these classes of materials?
¢ If so, what are they and what is their relationship to nearby broken symmetries?
--- CeRhlIn,, CeColn. and CelrIng (the Ce115’s)

Heavy Fermion Physics: Perspective and Outlook, Beijing



crystal structures
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¢ all tetragonal, each with an active magnetic layer:

e Cu-O layer in cuprates
e Fe-As layer in iron arsenides

e Ce-In layer in Cel115s



spin resonance
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G. Yu et al., Nat. Phys. 5, 873 (2009);
similar conclusion by Y. Uemura

Nat. Mat. 8, 253 (2009)

¢ ratio of resonance energy E, to 2A common to cuprates, iron arsenides, and heavy
fermions

¢ statement about similarity in nodal gap symmetry and/or pairing mechanism? d,2 2
gap in cuprates and CeColn, (all Ce115s) but d or s* in Fe-arsenides



broken symmetries in the cuprates
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Kivelson, Fradkin, Emery, Nature 393, 550 (1998)
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¢ pseudogap that encompasses much of the T-doping
phase diagram above T_:

e d-density wave, orbital currents, preformed Cooper
pairs, ...? but known to break rotational symmetry of

the lattice (electronic nematic state) (eg., Y. Ando et al., PRL
88, 137005 (2002); V. Hinkov et al., Science 319, 597 (2008), R. Daou et
al., Nature 463, 519 (2010))

¢ for T~T*/2 and for doping near 1/8, emergence of
incommensurate composite spin and/or charge density
waves = stripes, which break rotational and

translational symmetry ( electronic smectic state) (eg.,
M. Tranquada et al., Nature 429, 534 (2004), P. Abbamonte et al., Nat.
Phys. 1, 155 (2005))

¢ theoretical suggestion: transverse zero-point
fluctuations of magnitude ho ‘melt’ stripes to form
electronic nematic, which may be conducive to d-SC

¢ extension of smectic and nematic phase boundaries
into SC phase = possibility of their real-space
electronic texture being reflected in SC transition

Evidence for these broken symmetries in Ce115s?



Cd-doped CeColng
I

5 O e  aat “lo.0.90

ek
........ T

<, AFM
I—

daEm

\ P (GPa)
¢ large-moment commensurate AFM order induced by very dilute Cd substitution for
In in CeColng (L. Pham et al., PRL 97, 056404 (2006); M. Nicklas et al, PRB 76, 052401 (2007))

¢ for 0.007 < x<0.0125, microscopic coexistence of AFM and d-SC from NMR (R.R.

Urbano et al., PRL 99, 146402 (2007) and neutron diffraction, with &,r,, ~ 3&¢, (S. Nair et al., PNAS
107, 9537 (2010))
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diagram that almost mirrors the T-P = ot D0
diagram for CeRhin; 2f oS .
¢ when combined with applied Al - \\ o, |
pressure, T-P diagram for Cd-doped oL | W |
and pure CeColn, similar to CeRhing cq -2 0 2 4



bulk and resistive superconducting transitions
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¢ at x=0.01and P=0, T, > T p = 0 well above
the bulk T,

¢ for same crystal at P=1.5 GPa, where
evidence for magnetic order is absent, p —> 0
at the bulk T,

¢ not an artifact of chemical disorder
(pressure does not remove impurity scattering)
= an intrinsic effect due to coexisting
commensurate (Y, 2, ¥2) antiferromagnetism
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CeRhing

¢ for P < P1, microscopic, homogeneous coexistence
of incommensurate (%, %, 0) AFM order and d-wave
superconductivity (T. Mito et al., PRL 90, 077004 (2003))

¢ pronounced difference between initial sharp drop
in p,, toward zero and bulk T, from specific heat, with
difference decreasing as P — P1 (G. Knebel et al., JPCM 16,

8905 (2004))

¢ above P1, eg 2.2 GPa, where AFM is absent, in-
plane resistive and bulk T; coincide

¢ at, eg. 1.6 GPa< P1,

drop in p,, followed by a
‘tail’ that reaches zero at

T
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¢ reproducible with 103 change in measuring current = an intrinsic response to coexisting
antiferromagnetism in these very pure single crystals, irrespective of commensurate (Cd-

doped CeColn; ) or incommensurate order (CeRhin;)

T. Park et al., PRL (in press)
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anisotropy in the resistive transition

AW WL

=
o
N
T

=
o
(=}

';?m

P, P, (Q CM)

o
: ......,H —
— > iy

SN,

—A—1.61 GPa (ab)
—A—1.65 GPa (c)
—v— 2.42 GPa (ab)
—v— 2.43 GPa (c)

}P?<P1
}P;>P1

o >

=
<
BRI
o
N

T(K)

4.0

P=1.45 GPa<P1

%ﬁ.qoyﬁ - baseline !nstrumentall resolutlonI

—e—1//100
—0—1//110

3

1.6 2.0

1.8

2.2 2.4

T (K)
T. Park et al., PRL (in press)

T CeRhln
4+ N 5
L -
)0 9 LTy

3 ARM R 1
)
Lo@ooo o

1 .’ TCP Q
c
*}
00

25

15 2.0

P (GPa)
¢ in coexistence region, ‘tail’ in p,, but p_// [001]
drops sharply to zero well above bulk T.= some

form of textured superconductivity
¢ above P1, p_, and p_ — 0 at same temperature

0.0 0.5 1.0

¢ in-plane symmetry breaking in the coexistence

region:
e drop in p // [100] at a higher temperature than p

// [110], which does not have a ‘tail’
e not due to a structural distortion from crystal’s

tetragonal symmetry (Aso et al., JPS) 78, 073703 (2009))
e difference between p // [110] and p // [100]

approaches zero as P— P1



[001]

¢ for T>T_, formation of
(probably ‘patchy’ )
lamellae that allows a
zero-resistance path
from one side of crystal
to the other for current
flow parallel to [001]

¢ at lower T, but still > T
Josephson coupling
between patchy lamellae
forms a superconducting
network along [100] and
[110], with eventual bulk
phase coherence at T_

4

physical picture of anisotropy
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¢ broken rotational symmetry = smectic- or nematic-like network of textured

superconductivity



comparison to Ba-doped La,CuO,

connection to texture not possible but suggestive

T. Valla et al. Science 314, 1914 (2006)
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¢ resistive transition far above bulk T,_ and with a T (K)
temperature dependence similar to pj;oq in CeRhling -
¢ temperature for transition in pyg1;< Py
¢ interpreted as phase-fluctuating 2D T
superconductivity with maximum antinodal gap but ~204 S ;
much reduced T_ because of static stripes, which £ i
compete with SC -- at least at 1/8 doping in this £1el =) i
material =5 Z /
¢ also evidence for a pseudogap in CeRhin; below !
P1 (T. Mito et al., PRL 90, 077004 (2003)); direct - Oo,o o4 % A




T. Park et al., PRL (in press)
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C. Petrovic et al., Europhys. Lett. 53, 354 (2001)

Celrlng

¢ bulk T_ at 0.4 K but p—0 at T = 1K or higher

p(T) /p(1.6 K)

¢ counter to CeRhln,, zero resistance state at a
higher temperature for 1//[100] vs | //[001] but
like Ba-doped La,Cu0O, = textured SC

¢ scaling of field dependence of T, from bulk and
resistive measurements = same Cooper pairs at

both transitions

¢ no obvious
phase transition
except d-SC, but
non-monotonic
T.(P) = some
coexisting phase
competing with
SC?
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precursor state in Celring
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¢ not a phase transition but a
pseudogap-like electronic state that
appears at zero field near 2 K

¢ speculate that the pseudogap-like
phase is the origin of superconducting
texture in Celring
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Cel115s not alone
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¢ nematic hidden order state ¢ A/S-type crystals, T, below weak
beIO\{v 17.5 K that breaks incommensurate spin-density
rotational symmetry (R. Okazaki wave transition

et al., Science 331, 429 (2011)

¢ resistive transition much above

T. (E. Lengyel, PhD thesis, Tech. Univ.
Dresden, (2007))

¢ resistive transition
invariably at a temperature

higher than bulk T_ (E. Hassinger
etal., PRB 77, 115117 (2008))



iron-asenides
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¢ in-plane resistive anisotropy in de- :
twinned Co-doped BaFe,As, (J-H. Chu et
R b al., Science 329, 824 (2010)) -- not due to

Temperature(K)
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orthorhombic distortion = electronic

nematic

¢ C, structural to C, electronic symmetry
in quasi-particle interference maps of

CaFe; ,C0 (gAS, (T.-M. Chung et al., Science 327,
181 (2010) = electronic nematic
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summary and outlook

¢ evidence for anisotropically textured superconductivity from a comparison of
resistive and bulk transitions and, where studied, for rotational symmetry breaking by
the texture

¢ not a ‘dirt’ effect but an intrinsic response to the presence of a coexisting order,
irrespective of whether that phase is large-moment commensurate (Cd-doped
CeColn;) or incommensurate (CeRhin;) AFM, a weak incommensurate spin-density
wave (A/S-CeCu,Si,), a pseudogap-like state (Celring) or a nematic electronic state
(URu,Si,)

¢ absence of texture once coexisting order is suppressed, eg in all Ce115’s

¢ similarity to Ba-doped La,Cu0Q, in which symmetry-breaking pseudogap and stripe
phases known to be present

¢ spontaneous broken rotational symmetry and difference between resistive and bulk

transitions in Co-doped BaFe,As, and CaFe,As, (T.-M. Chung et al., Science 327, 181 (2010); J-H.
Chu et al., Science 329, 824 (2010))

¢ To what extent is the physics of textured superconductivity the same in these
classes of correlated materials?

¢ What do these effects imply about the relationship between superconductivity and
coexisting broken symmetries?



