

Quantum Phase Transition in a Partially Quantum Phase Transition in a Partially Frustrated System: CePdAl Frustrated System: CePdAl

Hilbert v. Löhneysen

Physikalisches Institut and Institut für Festkörperphysik Karlsruhe Institute of Technology

Beijing, January 8, 2012

Strongly correlated electron systems: electrons at the verge of localization

Electrons localized: magnetism (unless electron shells are completely occupied) due to exchange (= Coulomb interaction + Pauli principle)

Electrons delocalized: superconductivity is the rule rather than the exception, but one needs a "glue" to overcome electron repulsion: electron phonon coupling for "conventional" superconductors "magnetic" coupling via magnons, spin fluctuations, magnetic excitons in "unconventional" superconductors…

Strongly correlated electron systems: electrons at the verge between localization and itinerancy

Superconductivity and magnetism are often found in close proximity to each other, unlike weakly correlated metals where weak magnetic fields and/or magnetic impurities suppress superconductivity

Electron interactions depend on inter-electron distance: hence strong coupling between electrons and lattice dynamics

Magnetic instabilities in metals: how does a magnetic solid "melt" <u>"?</u>

scenarios:

charge fluctuations, Kondo effect, itinerant magnetism

Outline

Introduction: Quantum phase transitions - General

Quantum phase transitions in heavy-fermion metals, e.g., $CeCu_{6-x}Au_{x}$

CeCoIn₅: line of quantum critical points hidden by the superconducting dome

CePdAl – a partially frustrated heavy-fermion system

- \bullet magnetic phase diagram
- \bullet Approach to quantum criticality by Ni doping

Partial order in MnSi under pressure for ${\mathcal T}_{\mathsf C}\rightarrow 0$ and for ρ = 0 at ${\mathcal T}_{\mathsf C}$

Acknowledgments

V. Fritsch K. Grube S. Drobnik S. Zaum N. Bagrets L. Pintschovius D. Reznik* A. Hamann D. Lamago Th. Wolf *Karlsruhe, *now at U Colorado, Boulder*

- E. D. Bauer, J. D. Thompson *Los Alamos*
- O. Stockert, S. Woitschach *Dresden*

M. Garst, A. Rosch, M. Vojta, P. Wölfle, P. Coleman, Q. Si, J. Kroha

Territory of theory

Work supported by Deutsche Forschungsgemeinschaft and Helmholtz Association of Research Centers

Quantum phase transitions Quantum phase transitions Quantum phase transitions in heavy-fermion metals

The Standard Model of phase transitions: The Standard Model of phase transitions: Ginzburg-Landau-Wilson theory

V. Ginzburg

G. K. Wilson

J. A. Hertz

Universality:

critical behavior (exponents α , β, γ, ν, ...) depend on spatial dimension and symmetry of the order parameter only because correlation length diverges at T_c , $\xi \sim |T - T_c|^{-v}$

correlation time: τ [~]ξ*^z* ("critical slowing down")

 $\mathcal{T}_{\rm c}\rightarrow 0$: $\;$ energy of fluctuations ħ/ τ important: temperature sets the system size in the time direction: *d* → *d* + *^z*

Problem: low-energy fermions

Quantum phase transitions (2nd order)

Energy scale of quantum effects:
$$
\frac{\hbar}{\tau}
$$
 \nclassical case: $\frac{\hbar}{\tau} \ll k_B T \approx k_B T_c$, quantum fluctuations negligible \nquantum case: $\frac{\hbar}{\tau} \geq k_B T$, possible if $T_c \rightarrow 0$

spatial and temporal fluctuations determine dynamics, $\tau \sim \xi^2$

effective dimension $d_{\text{eff}} = d + z$ new universality classes :role of temperature control paramter thermal excitations via $k_{\rm B}T$ finite system size $\tau \leq \hbar / k_{\rm B}T$

The Standard Model of metals: Landau Fermi-liquid theory

Electron-electron interactions parametrized by few parameters m*, $\mathsf{F_0}^\mathsf{a}$, $\mathsf{F_0}$ s , ...

$$
C = \gamma T = \frac{m^*}{m_0} \gamma_0 T; \ \chi = \frac{m^*}{m_0} \frac{1}{1 + F_0^a} \ \chi_0
$$

$$
\Delta \rho \sim T^2
$$

Since \sim 1990: many systems show deviations:

"non-Fermi liquids"

1:1 correspondence between excitations of interacting and noninteracting systems:

L. D. Landau

"Fermi liquid"

NFL behavior can arise from distinc tly different physic al origins:

Multichannel Kondo effectDistribution of Kondo temperatures Quantum phase transitions

Origin of heavy masses *m* ≈ 100 *m*₀ in Ce- and Yb-based rare-earth alloys

Two "ingredients":

- hybridization of 4*f* and conduction electrons
- strong on-site electron repulsion in 4*f* state

Singly occupied lowest 4*f* state will be screened by conduction electrons: singlet formation

 $\sf Resonance$ at $E_{\sf F}$ due to virtual excitions from 4*f* state to $E_{\sf F}$

Heavy-fermion system: lattice-coherent superposition of Kondo anomalies

Quantum criticality: "good guys vs. bad guys"

Scattering of heavy quasiparticles by spin fluctuations: diverging *m** for 3D FM and 2D AF

Unbinding of heavy composite quasiparticles: change of Fermi volume

Hertz, Millis, Moriya, Rosch et al. Coleman, Si, Pepin et al.

Magnetic order in CeCu_{6-x}Au_x

"negative lattice pressure" explains $T_N(x)$ for $x < 1$

Direct proof: Néel temperature T_n vanishes under hydrostatic pressure

 $x = 0.1$: Quantum critical point with "non-Fermi liquid" behavior

What's so special about $CeCu_{6-x}Au_{x}$?

Incommensurate magnetic order of CeCu_{6-x}Au_x

Three-dimensional magnetic order, **Q** vector confined to the *a*c** plane

CeCu6-*^x*Au *x* is almost Ising like: *M_c* : M_a : *M_b* = 10:2:1

"Jump" of ordering wave vector to the *a** axis between *x* = 0.3 and *x* = 0.5 while $T_N(x)$ varies smoothly

We know that we can tune quantum criticality by concentration or hydrostatic pressure. How about the magnetic order under pressure?

Evolution of the magnetic structure of CeCu_{5.5}Au_{0.5} under hydrostatic pressure

Scaling of the volume expansivity CeCu_{6-x}Au_x

Change in magnetic ordering wave vector between *^x*= 0.3 and *x* = 0.5: associated with sign change of jumps in $\Delta \alpha_{\mathsf{i}}$ at $\mathcal{T}_{\mathsf{N}}.$

Remarkable scaling of $\alpha_\mathsf{V}(\mathcal{T})$ despite the different α_i 's. : Robustness of QCP

Towards establishing a (*p* , *B*.*T*) Towards establishing a (*p* , *B*.*T*) phase diagram of quantum phase diagram of quantum criticality near B_{c2} in CeCoIn₅

Interplay of superconductivity and magnetism near quantum critical points

The "hidden" QCP in CeCoIn₅

Non-Fermi liquid behavior near *B*_{c2}, e. g., $C/T \sim \ln (T_o/T)$ (2D AF Hertz-Millis)

A. Bianchi et al., Phys. Rev. Lett. 91, 257001 (2003)

No signature of AF order near B_{c2} in CeCoIn₅

Additional phase within the SC region: "Q phase"

M. Kenzelmann et al., Science 321, 1652 (2008)

Cd doping induces AF order

Y. Tokoiwa et al., Phys. Rev. Lett. 101, 037001 (2008) S. Nair et al., PNAS 107, 9537 (2010))

2D-3D crossover from previous thermal-expansion measurements

J. G. Donath et al., Phys. Rev. Lett. 100, 136401 (2008)

Thermal expansion of CeCoIn Thermal expansion of CeCoIn 5 for *B* || *c*

Grüneisenparameter as a test for quantum criticality

Grüneisen parameter remains positive throughout investigated field range: no QCP at *p* = 0

> Sign change of d $T_{\rm c}$ /d ρ at *B+* = 4.1 T: maximum $\, T_{\rm c}^{}(\rho)$ of superconducting dome

Possibility of a line of quantum critical points in the (ρ, B) plane of CeCoIn $_5$

S. Zaum et al., PRL 2011

- *^T*c,max(*p*) *Ronning et al., PRB 2003 Tayama et al., JPSJ 2005 Knebel et al., Phys. Stat. Sol. 2010 ^T*c,max(*p*) *Lengyel 2008*
- Cd doping *Pham et al., PRL 2007 Donath et al., Phys. B 2008 Tokiwa et al., PRL 101 Nair et al., PNAS 2010*

Frustration as a tuning Frustration as a tuning parameter for QPT in metals? parameter for QPT in metals?

Phase diagram of S = $\frac{1}{2}$ 2D insulating magnet

S. Sachdev and B. Keimer, Phys.Today, Feb. 2011

Coherence length ξ and de-Boglie wavelength λ B= *ħc/k*B*T* of the excitations Quantum critical range: ξ > $\lambda_{\rm B}$, temperature is the only relevant energy scale

Frustration as a route to quantum criticality Frustration as a route to quantum criticality

2D triangular and kagome lattices

Six-fold degeneracy of a triangular Ising placquette

3D kagome lattice

Large degree of degeneracy leads to low-lying fluctuations and thus to suppression of magnetic order

Frustration and conductivity Frustration and conductivity

Frustration Parameter <code>f = $\Theta_{\sf CW}$ /</code>

V. Fritsch et al., PRB 72 (2006)

Possible additional phase line at \mathcal{T} = 0: LMM vs. HMM

Lowering the effective dimensionality leads to an increase of quantum fluctuations, and thus to the local QCP. Magnetic field restores 3D and hence yields Hertz-Millis

cf. experiments on Co- and Ir-doped YbRh ²Si 2 *S. Friedemann et al,, Nature Phys. 2009*

Possible continuous evolution from local-moment to itinerant antiferromagnetism in Kondo systems

M. Vojta, PRB 78, 125109 (2008) See also T. Senthil et al., PRL 90, 216403 (2003)

LAF - IAF transition may be gradual How to experimentally "control" the vertical axis? What is the effect of magnetic field in this plot?

CeCu_{1-x}Au_x: gradual evolution of ordered magnetic moments (from ENS)

Tiny specific-heat anomaly at \mathcal{T}_N on top of a large "non-Fermi-liquid" background

CePdAI – a partially frustrated Ce-based compound

Suppression of magnetic order in CePdAI by Ni doping

Equivalence of pressure and Ni doping when \mathcal{T}_N is plotted against unit-cell volume

 $T_{\textrm{N}}$ \rightarrow 0 for *x* \approx 0.14: C/T \sim - log (*T*/ $T_{\textrm{0}}$) or for *p =* 1 – 1.2 GPa: ρ (*T*) ~ ρ_{0} + *AT* n

Goto et al., J. Phys. Chem: Sol. 63, 1159 (2002) Two-dimensional criticality or novel QCP?

Specific heat and thermal expansion of single-crystalline CePdAl

Magnetic susceptibility of a CePdAl single crystal

Note: strong Ising-like anisotropy due to single-ion crystal-field effects

See also: *Isikawa et al., J. Phys. Soc. Jpn. 65, Suppl. B, 117 (1996*

Magnetic susceptibility of $\mathsf{CePd}_{1\text{-}x}\mathsf{Ni}_x\mathsf{Al}$ with $x = 0.14$

Strong anisotropy remains upon approaching the quantum critical point

Dynamic susceptibility of **CePdAI from quasielastic** neutron scattering

IN4 ILL (TOF) powder measurements

Unusual dependence Γ(*T*) ~ *T*

100

T (K)

200

Integrated scattering intensity scales with bulk susceptibility

Magnetic order in CePdAl

are in fact short-range ordered!

Thermal expansion and magnetostriction of CePdAl Thermal expansion and magnetostriction of CePdAl

Magnetic phase diagram of CePdAl from thermal expansion and magnetostriction

Strong *T* dependence of the Grüneisen parameter for $T \rightarrow 0$

Partial order in MnSi

The weak itinerant ferromagnet MnSi

Representative of weak itinerant magnets: ZrZn₂, Sc₃In, Ni₃Al, YNi₃, CoS₂, ... cubic, B20 structure, no inversion symmetry ferromagnetic: T $_{\rm c}$ = 29.5 K, μ = 0.4 $\mu_{\rm B}$

Specific heat: small entropie change at T $_{\rm c}$ at low T: γ ≈ 38 mJ/mol K²

Spin-orbit coupling leads to a helical twist of the magnetization

λ = 175 Å

Magnetic superlattice reflections along <111> close to Bragg peaks

Characteristic energy scales in MnSi Characteristic energy scales in MnSi

- •ferromagnetic exchange
- • spin-orbit coupling: Dzyaloshinskii-Moriya interaction s · ([∇] [×] s) λ ≈ 175 Å (cf. a = 4.558 Å) leads to long-wavelength spiral structure
- crystal field potential (P2₁3): helix locked at $<$ 111 $>$ or $<$ 100 $>$, not $<$ 110 $>$
	- ⇒ sharp satellite reflections around nuclear Bragg peaks at <111> positions

Phase diagram of MnSi under pressure

C. Pfleiderer et al. 1997, 2003

Pressure dependence of the Curie temperature

Magnetic susceptibility under pressure

Electrical resistivity of MnSi under high pressure

C. Pfleiderer et al. 1997, 2001; N. Doiron-Leyaud et al. 2003

Fermi-liquid T dependence $\rho(\mathcal{T}) = \rho_0 + \mathcal{A}\mathcal{T}^{\alpha}, \ \alpha = 2$ observed for $\rho < \rho_c$, $\tau < \tau_c$ only Non-Fermi-liquid behavior α = 3/2 for $p > p_c$ over large p, T range

Elastic neutron scattering at $p \approx p_c$

C. Pfleiderer et al., Nature 2004

strong intensity shift from (111) to (110)

long-range order *along* the wide *angular* distribution helical direction (resolution limited) of helical direction

Strange magnetic state of partial order

Observed around and even above $\bm{\rho}_c$, with sluggish onset

Order remains helical with little change of periodicity and total intensity, compared to *p* = 0

Long-range (> 2000 Å) order along propagation direction of the helix

Propagation directions are distributed over a very wide angular range: "partial order", analogous to partial order in certain types of liquid crystals

µSR: partial order is dynamic

T. Uemura, Nature Phys. 2007

Partial order also seen in NMR experiments

W. Yu et al. PRL 2004

Fate of the helical order above $\,_{c}$ at ρ = 0 $\,$

Existence of orientationally disordered helical structure above T_c Relation to partial order for $T_c \rightarrow 0$?

S. V. Grigoriev, P. Böni et al. 2005

Small-angle polarized neutron scattering at FRG-1 Geesthacht

q-dependent elastic scatteringin MnSi above T_c

Spin topology above \mathcal{T}_{C}

Local helical correlations

- Pitch conserved from low-*T* phase
- Correlation length decreases with higher *T*
- Helices point in any direction

Intrinsic energy width above $T_{\rm C}$

Spin-cluster calculations

$$
\mathcal{H} = -\frac{1}{2N} \sum_{i=1}^{N} \left(\sum_{j(i)} (J\mathbf{s}_i \cdot \mathbf{s}_j + \mathbf{D}_{i,j} \cdot (\mathbf{s}_i \times \mathbf{s}_j)) \right) \quad + \text{crystal potential}
$$
\n
$$
\text{with } |\mathbf{D}_{i,j}| = D \text{ and } \mathbf{D}_{i,j} = -\mathbf{D}_{j,i} \; .
$$

Helix is unlikely to be the ground state for 2D and 3D:

Moments in planes \perp [111] are frustrated with respect to DM interaction

Model assumptions:

- (1) Spins localized at Mn sites in the B20 MnSi structure, neglecting Si atoms
- (2) Spins interact with their 6 nearest neighbors only
- (3) Orientation optimization performed for individual spins one-by-one in random order (fixed magnitude)

(4) Different *D*/*J*

Color code indicates spin direction

Ground states of finite clusters with exchange and DM interactions

A. Hamann et al., PRL 107, 037207 (2011)

$$
\mathcal{H} = -\frac{1}{2N} \sum_{i=1}^{N} \left(\sum_{j(i)} \left(J\mathbf{s}_i \cdot \mathbf{s}_j + \mathbf{D}_{i,j} \cdot (\mathbf{s}_i \times \mathbf{s}_j) \right) \right), \quad \text{with } |\mathbf{D}_{i,j}| = D \text{ and } \mathbf{D}_{i,j} = -\mathbf{D}_{j,i} .
$$

 \mathbf{v}

 $\overline{ }$

Helical order along [111] direction locked by crystal potential

"triple helix" is the groundstate in the absence of crystal potential

Qualitative energy considerations Qualitative energy considerations

- Triple-helix clusters destabilize with increasing size
- Triple-helix structure cannot be locked onto crystal anisotropy
- Single helix can be locked
- \rightarrow Crystal potential makes the single helix favorable at low *T*

Transition at ${\mathcal T}_C$ should be of first order:

- Topologically distinct phases
- No continuous crossover

Temperature

Conclusion and questions

- How does a metallic "spin solid", notably in a heavy-fermion system, melt at a QCP? Break up of three-dimensionality? What happens to the Fermi surface? Prospects of spin-liquid phases (cf. ${\sf YbRh}_2{\rm Si}_2$).
- Robust quantum-critical concentration range in CeCu_{6-x}Au_x: sample with *x* = 0.5 can under hydrostatic pressure be driven to magnetic ordering wave vector of *x* = 0.3. Likewise, scaling of the volume thermal expansivity is observed up to *x* = 0.5.
- $\bullet\,$ What is the origin of the anomalous QCP in $\text{CeCu}_{6\text{-}x}$ Au $_{x}$ and $\text{YbRh}_{2}\text{Si}_{2}$ as opposed to CeCu $_{\rm 2}$ Si $_{\rm 2}$ and other systems following the standard Hertz-Millis-Moriya scenario.
- Thermal expansion of CeCoIn 5 suggests a quantum-critical line in the (*B*,*p,T* =0) plane emanating from a QCP at $p\approx$ - 1 kbar for B = 0 and passing through $B\approx$ 4 T for p = 0.
- Approach to QCP in Ni-doped CePd_{1-x}Ni_xAl for x \approx 0.14: C/T \sim log(T_{0}/T).
- MnSi: competing energies (exchange, DM, ...) lead to new topological phases and unusual phases retaining helical pitch (triple-helix-structure).